Ph မျက်နှာပြင်တွင် စာများအပြည့် မပေါ်လျှင် slider ကို ဆွဲ၍ လည်းကောင်း၊ ph ကို အလျားလိုက်ပုံစံ (landscape position) ပြောင်း၍ လည်းကောင်း ဖတ်ရှုနိုင်ပါသည်။

1.          Complete each sentence.

$\text{(a)}\quad$ The slope of the line passing through two points $(-6, 0)$ and $(2, 3)$ is __________.

$\text{(b)}\quad$ The slope of the line joining the point $(1, 2)$ and the origin is __________.

$\text{(c)}\quad$ A vertical line has __________ slope.

$\text{(d)}\quad$ A horizontal line has __________ slope .

Show/Hide Solution

(a) $m=\displaystyle\frac{3-0}{2-(-6)}=\displaystyle\frac{3}{8}$

(b) $m=\displaystyle\frac{2-0}{1-0}=2$

(c) undefined

(d) zero

2.          For each graph state whether the slope is positive, negative, zero or undefined, then find the slope if possible.

Show/Hide Solution

(a) undefined slope

(b) undefined slope

(c) zero slope

(d) zero slope

(e) positive slope, $m=1$

(f) positive slope, $m=\displaystyle\frac{2}{3}$

(g) negative slope, $m=-\displaystyle\frac{3}{4}$

(h) negative slope, $m=-\displaystyle\frac{2}{3}$

3.          Which pairs of points given below will determine horizontal lines? Which ones vertical lines? Determine the slope of each line without calculation.

$\displaystyle \begin{array}{l} \text{(a)}\quad (5,2)\ \text{and}\ (-3,2) \\\\ \text{(b)}\quad (0,5)\ \text{and}\ (-1,5)\\\\ \text{(c)}\quad (2,3)\ \text{and}\ (2,6) \\\\ \text{(d)}\quad (0,0)\ \text{and}\ (0,-2)\\\\ \text{(e)}\quad (1,-2)\ \text{and}\ (-3,-2)\\\\ \text{(f)}\quad (a,b)\ \text{and}\ (a,c) \end{array}$

Show/Hide Solution

(a) horizontal line, slope = 0 ($\because$ same y-coordinate)

(b) horizontal line, slope = 0 ($\because$ same y-coordinate)

(c) vertical line, slope = undefined ($\because$ same x-coordinate)

(d) vertical line, slope = undefined ($\because$ same x-coordinate)

(e) horizontal line, slope = 0 ($\because$ same y-coordinate)

(f) vertical line, slope = undefined ($\because$ same x-coordinate)

4.          Find the slope of each line which contains each pair of points listed below.

$\displaystyle \begin{array}{l} \text{(a) }\quad A(0,0)\ \text{ and }\ B(8,4)\\\\ \text{(b) }\quad C(10,5)\ \text{ and }\ D(6,8)\\\\ \text{(c) }\quad E(-5,7)\ \text{ and }\ F(-2,-4)\\\\ \text{(d) }\quad G(23,15)\ \text{ and }\ H(18,5)\\\\ \text{(e) }\quad I(-2,0)\ \text{and }\ J(0,\ 6)\\\\ \text{(f) }\quad K(15,6)\ \text{ and }\ L(-2,23) \end{array}$

Show/Hide Solution

The slope of the line joining the points $(x_1, y_1)$ and $(x_2, y_2)$ is $m=\displaystyle\frac{y_2-y_1}{x_2-x_1}.$

\begin{aligned} \text{(a)}\quad m_{AB}&=\displaystyle\frac{4-0}{8-0}\\\\ &= \displaystyle\frac{1}{2} \end{aligned}

\begin{aligned} \text{(b)}\quad m_{CD}&=\displaystyle\frac{8-5}{6-10}\\\\ &= -\displaystyle\frac{3}{4} \end{aligned}

\begin{aligned} \text{(c)}\quad m_{EF}&=\displaystyle\frac{-4-7}{-2-(-5)}\\\\ &= -\displaystyle\frac{11}{3} \end{aligned}

\begin{aligned} \text{(d)}\quad m_{GH}&=\displaystyle\frac{5-15}{18-23}\\\\ &= \displaystyle\frac{-10}{-5}\\\\ &=2 \end{aligned}

\begin{aligned} \text{(f)}\quad m_{IJ}&=\displaystyle\frac{6-0}{0-(-2)}\\\\ &= \displaystyle\frac{6}{2}\\\\ &=3 \end{aligned} \begin{aligned} \text{(f)}\quad m_{KL}&=\displaystyle\frac{23-6}{-2-15}\\\\ &= \displaystyle\frac{17}{-17}\\\\ &=-1 \end{aligned}

5.          Find the slope of each line which contains each pair of points listed below.

$\displaystyle \begin{array}{l} \text{(a) }\quad E\left( {\displaystyle\frac{3}{4},\frac{4}{5}\text{ }} \right)\ \text{and }\ F\left( {-\displaystyle\frac{1}{2},\frac{7}{5}} \right)\\\\ \text{(b) }\quad G(-a,b)\ \text{ and }\ H(3a,2b)\\\\ \text{(c) }\quad L\left( {\sqrt{{12}},\sqrt{{18}}} \right)\ \text{ and }\ M\left( {\sqrt{{27}},\sqrt{8}} \right)\\\\ \text{(d) }\quad P(0,a)\ \text{ and }\ Q(a,0) \end{array}$

Show/Hide Solution

The slope of the line joining the points $(x_1, y_1)$ and $(x_2, y_2)$ is $m=\displaystyle\frac{y_2-y_1}{x_2-x_1}.$

\begin{aligned} \text{(a)}\quad m_{EF}&=\displaystyle\frac{\frac{7}{5}-\frac{4}{5}}{-\frac{1}{2}-\frac{3}{4}}\\\\ &= \displaystyle\frac{\frac{3}{5}}{-\frac{5}{4}}\\\\ &= -\displaystyle\frac{12}{25} \end{aligned}

\begin{aligned} \text{(b)}\quad m_{CD}&=\displaystyle\frac{2b-b}{3a-(-a)}\\\\ &= \displaystyle\frac{b}{4a} \end{aligned}

\begin{aligned} \text{(c)}\quad m_{EF}&=\displaystyle\frac{\sqrt{8}-\sqrt{18}}{\sqrt{27}-\sqrt{12}}\\\\ &= \displaystyle\frac{2\sqrt{2}-3\sqrt{2}}{3\sqrt{3}-2\sqrt{3}}\\\\ &= \displaystyle\frac{-\sqrt{2}}{\sqrt{3}}\\\\ &= -\displaystyle\frac{\sqrt{6}}{3} \end{aligned}

\begin{aligned} \text{(d)}\quad m_{GH}&=\displaystyle\frac{0-a}{a-0}\\\\ &= \displaystyle\frac{-a}{a}\\\\ &=-1 \end{aligned}

6.          Find $p, q, r$ in the followings:

$\text{(a) }\quad$ The slope joining the points $(0,3)$ and $(1,p)$ is $5$.

$\text{(b) }\quad$ The slope joining the points $(-2, q)$ and $(0,1)$ is $-1$.

$\text{(c) }\quad$ The slope joining the points $(-4, -2)$ and $(r, -6)$ is $-6$.

Show/Hide Solution

The slope of the line joining the points $(x_1, y_1)$ and $(x_2, y_2)$ is $m=\displaystyle\frac{y_2-y_1}{x_2-x_1}.$

\begin{aligned} \text{(a)}\quad \displaystyle\frac{p-3}{1-0}&=5\\\\ p-3 &= 5\\\\ p &= 8 \end{aligned}

\begin{aligned} \text{(b)}\quad \displaystyle\frac{1-q}{0-(-2)}&=-1\\\\ \displaystyle\frac{1-q}{2}&=-1\\\\ 1-q&=-2\\\\ q & = 3 \end{aligned}

\begin{aligned} \text{(c)}\quad \displaystyle\frac{-6-(-2)}{r-(-4)}&=-6\\\\ \displaystyle\frac{-4}{r+4}&=-6\\\\ r+4&=\displaystyle\frac{-4}{-6}\\\\ r+4&=\displaystyle\frac{2}{3}\\\\ r&=-\displaystyle\frac{10}{3} \end{aligned}

7.          Find the slope corresponding to the following events.

$\text{(a) }\quad$ A man climbs $10$ m for every $200$ meters horizontally.

$\text{(b) }\quad$ A motorbike rises $20$ km for every $100$ kilometers horizontally.

$\text{(c) }\quad$ A plane takes off $35$ km for every $5$ kilometers horizontally.

$\text{(d) }\quad$ A submarine descends $120$ m for every $15$ meters horizontally.

Show/Hide Solution

(a) $m=\displaystyle\frac{\text{rise}}{\text{run}} =\displaystyle\frac{10}{200}=\displaystyle\frac{1}{20}$

(b) $m=\displaystyle\frac{\text{rise}}{\text{run}} =\displaystyle\frac{20}{100}=\displaystyle\frac{1}{5}$

(c) $m=\displaystyle\frac{\text{rise}}{\text{run}} =\displaystyle\frac{35}{5}=7$

(d) $m=\displaystyle\frac{\text{rise}}{\text{run}} =\displaystyle\frac{-120}{15}=-8$

8.          A train climbs a hill with slope $0.05$. How far horizontally has the train travelled after rising $15$ meters?

Show/Hide Solution

$m = 0.05$, rise $= 15 m$
Since $m=\displaystyle\frac{\text{ rise}}{\text{ run}}$,
$0.05=\displaystyle\frac{15}{\text{ run}} \Rightarrow\text{ run} = 300.$

9.          The vertices of a triangle are the points $A(-2,3)$, $B(5,-4)$ and $C(1,8)$. Find the slope of each side and perimeter of a triangle.

Show/Hide Solution

$A=(-2,3),\ B=(5,-4),\ C=(1,8)$

Since $m=\displaystyle\frac{y_2-y_1}{x_2-x_1},$

$m_{AB}=\displaystyle\frac{-4-3}{5+2}=-1$

$m_{BC}=\displaystyle\frac{8+4}{1-5}= -3$

$m_{AC}=\displaystyle\frac{8-3}{1+2}=\frac{5}{3}$

length of a segment $=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

$\therefore\ AB=\sqrt{(5+2)^2+(-4-3)^2}=\sqrt{98}=9.9$

$BC=\sqrt{(1-5)^2+(8+4)^2}=\sqrt{160}=12.6$

$AC=\sqrt{(1+2)^2+(8-3)^2}=\sqrt{34}=5.8$

$\therefore\ \text{ the perimeter of}\ \triangle ABC = AB + BC + AC = 9.9+12.7+5.8=28.4$

10.          The vertices of a parallelogram are the points $P(1,4)$, $Q(3,2)$, $R(4,6)$ and $S(2,8)$. Find the slope of each side.

Show/Hide Solution

$P=(1,4)$, $Q=(3,2)$, $R=(4,6), S=(2,8)$

Since $m=\displaystyle\frac{y_2-y_1}{x_2-x_1},$

$m_{PQ}=\displaystyle\frac{2-4}{3-1}=-1$

$m_{QR}=\displaystyle\frac{6-2}{4-3}= 4$

$m_{RS}=\displaystyle\frac{8-6}{2-4}=-1$

$m_{PS}=\displaystyle\frac{8-4}{2-1}=4$

11.          A line having a slope of $-1$ contains the point $(-2,5)$. What is the $y$-coordinate of the point on that line whose $x$-coordinate is $8$?

Show/Hide Solution

Let the required point be $(8, y).$

Since $m=\displaystyle\frac{y_2-y_1}{x_2-x_1},$

$-1=\displaystyle\frac{y-5}{8+2}$

$\therefore\ y= -5$.

Ph မျက်နှာပြင်တွင် စာများအပြည့် မပေါ်လျှင် slider ကို ဆွဲ၍ လည်းကောင်း၊ ph ကို အလျားလိုက်ပုံစံ (landscape position) ပြောင်း၍ လည်းကောင်း ဖတ်ရှုနိုင်ပါသည်။

#### COMBINATION

A combination is a selection of objects without regard to order or arrangement. The different groups or selections of a number of things taken some or all of them at a time are called combinations.

Combination နှင့် Permutation မတူညီသော အချက်မှာ

• အစုတစ်ခုအတွင်းမှာ အစုပိုင်းတစ်ခုကို ရွေးချယ်လိုက်သည် ဆိုပါစို့…။
• Permutation သည် ရွေးချယ်လိုက်သော အစုပိုင်းအတွင်းရှိ အစုဝင်တစ်ခုချင်းစီ၏ အစီအစဉ်ကို ထည့်သွင်း စဉ်းစားသည်။
• Combination သည် ရွေးချယ်လိုက်သော အစုပိုင်းအတွင်းရှိ အစုဝင်တစ်ခုချင်းစီ၏ အစီအစဉ်ကို ထည့်သွင်း စဉ်းစားခြင်း မရှိပါ။
အောက်ပါ ဥပမာကို လေ့လာကြည့်ကြမည်။

A, B, C, D နှင့် E ကျောင်းသား ၅ ယောက်ထဲမှ ကျောင်းသား ၂ ယောက်ပါသော ကိုယ်စားလှယ်အဖွဲ့ ဖွဲ့ရန်လိုအပ်သည်။

(a) ပ-ကိုယ်စားလှယ်၊ ဒု-ကိုယ်စားလှယ် ကျောင်းသား ၂ ယောက်ပါသော ကိုယ်စားလှယ် အဖွဲ့ပေါင်း မည်မျှ ဖွဲ့နိုင်သနည်း။

(b) ကျောင်းသား ၂ ယောက်ပါသော ကိုယ်စားလှယ် အဖွဲ့ပေါင်း မည်မျှ ဖွဲ့နိုင်သနည်း။

မေးခွန်း (a) တွင် ပ-ကိုယ်စားလှယ်၊ နှင့် ဒု-ကိုယ်စားလှယ် ဟူ၍ ခွဲခြားမေးထားသည်။ ထို့ကြောင့် မည်သူက ပ-ကိုယ်စားလှယ် ဖြစ်မည်၊ မည်သူက ဒု-ကိုယ်စားလှယ် ဖြစ်မည်၊ ဆိုသော အစီအစဉ်သည် အရေးပါသည်ကို တွေ့ရပါမည်။

မေးခွန်း (b) တွင် ကျောင်းသား ၂ ယောက်ပါသော ကိုယ်စားလှယ် အဖွဲ့ပေါင်းဟု မေးထားသည်။ ကိုယ်စားလှယ်အဖွဲ့၌ ကျောင်းသားနှစ်ယောက် ပါဝင်ရန်သာလိုအပ်သည်။ ပထမကျောင်းသား၊ ဒုတိယကျောင်းသား၊ မည်သူမည်ဝါ ဖြစ်ရမည်ဆိုသော သတ်မှတ်ချက်သည် အရေးမပါတော့ပါ။

ထို့ကြောင့် မေးခွန်း (a) အတွက် တွဲနိုင်သော အစီအစဉ်ပေါင်းမှာ $20$ ဖြစ်ပြီး၊ မေးခွန်း (B) အတွက် တွဲနိုင်သော အစီအစဉ်ပေါင်းမှာ $10$ ဖြစ်သည်။

အောက်ပါဇယားဖြင့် ယှဉ်တွဲလေ့လာကြည့်ပါ။

A B C D E
B BA BC BD BE
C CA CB CD CE
D DA DB DC DE
E EA EB EC ED

မေးခွန်း (a) သည် အစီအစဉ် အရေးပါသောကြောင့် permutation ဖြစ်ပြီး မေးခွန်း (b) တွင် ကျောင်းသားနှစ်ယောက်၏ အစီအစဉ် အရေးမပါတော့ သောကြောင့် combination ဖြစ်သည်။

#### COMBINATION OF $n$ OBJECTS TAKEN $r$ AT A TIME

The number of combinations of $n$ different things taken $r$ at a time is denoted by ${}^nC_r$ and is defined as

$\begin{array}{|c|} \hline ^{n}{{C}_{r}}=\displaystyle\frac{{n!}}{{r!}{(n-r)!}}\\ \hline\end{array}$

#### DIFFERENCE BETWEEN PERMUTATION AND COMBINATION

Permutation Combination
Permutation is defined as arrangement of r things that can be done out of total n things. Combination is defined as selection of r things that can be done out of total n things.
Represents arrangement. Represents grouping or selection
Order of objects or arrangement matter Order of grouping/selection does not matter
Denoted by $^{n}{{P}_{r}}=\displaystyle\frac{{n!}}{{(n-r)!}}$ Denoted by $^{n}{{C}_{r}}=\displaystyle\frac{{n!}}{{r!}{(n-r)!}}$
Many permutations can be derived from a single combination. Only one combination can be derived with one permutation.

အောက်ပါ video ဖြင့် ယှဉ်တွဲလေ့လာကြည့်ပါ။

Video Credit : Steve Stein

Example (1)

(a).          A local school board with 8 people needs to form a committee with three people. How many ways can this committee be formed?

Order of 3 people doesn't matter. Thus, it is combination.

Number of ways to constitute a committee

$\begin{array}{l} ={\ }^{8}{{C}_{3}}\\\\ =\displaystyle\frac{{8!}}{{3!}{(8-3)!}}\\\\ =\displaystyle\frac{{8!}}{{3!}{5!}}\\\\ = \displaystyle\frac{{8\times7\times6\times5\times4\times3\times2\times1}}{{(3\times2\times1)}\cdot{(5\times4\times3\times2\times1)}}\\\\ =56 \end{array}$

(b).          A local school board with 8 people needs to form a committee with three different responsibilities. How many ways can this committee be formed?

Order of 3 people matter for their responsibilities. Thus, it is permutation.

Number of ways to constitute a committee.

$\begin{array}{l} ={\ }^{8}{{P}_{3}}\\\\ =\displaystyle\frac{{8!}}{{(8-3)!}}\\\\ =\displaystyle\frac{{8!}}{{5!}}\\\\ = \displaystyle\frac{{8\times7\times6\times5\times4\times3\times2\times1}}{{5\times4\times3\times2\times1}}\\\\ =336 \end{array}$

#### PROPERTIES OF COMBINATIONS

$\begin{array}{|c|}\hline\color{red}{ 1. {\ }^{n}{C}_{r}={\ }^{n}{C}_{n-r}}\\\hline\end{array}$

Proof:
\begin{aligned} \mathrm{LHS}&={ }^{n} C_{r}=\frac{n !}{r !(n-r) !} \\\\ \mathrm{RHS} &={ }^{n} C_{n-r}=\frac{n !}{(n-r) !(n-(n-r)) !} \\\\ &=\frac{n !}{(n-r) ! r !} \\\\ \therefore \mathrm{LHS} &=\mathrm{RHS} \\\\ \text { Note: }& 1. {\ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x= y \text { or } x+y=n\\\\ & 2. {\ }^{n} C_{0}={ }^{n} C_{n}=1\\\\ & 3. {\ }^{n} C_{1}={ }^{n} C_{n-1}=n\\\\ \end{aligned}

$\begin{array}{|c|}\hline \color{red}{2. {\ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}}\\\hline\end{array}$

Proof:

\begin{aligned} \mathrm{LHS} &={ }^{n} C_{r}+{ }^{n} C_{r-1} \\\\ &=\frac{n !}{r !(n-r) !}+\frac{n !}{(r-1) !(n-r+1) !} \\\\ &=\frac{n !}{r !(n-r) !} \times \frac{(n-r+1)}{(n-r+1)}+\frac{n !}{(r-1) !(n-r+1) !} \times \frac{r}{r} \\\\ &=\frac{n !(n-r+1)}{r !(n-r+1) !}+\frac{r \times n !}{r !(n-r+1) !}[n !=n(n-1) !] \\\\ &=\frac{n !(n+1)-r \times n !+r \times n !}{r !(n-r+1) !} \\\\ &=\frac{(n+1) !}{r !(n-r+1) !} \\\\ \operatorname{RHS} &={ }^{n+1} C_{r}\\\\ &=\frac{(n+1) !}{r !(n+1-r) !} \\\\ &=\frac{(n+1) !}{r !(n-r+1) !} \\\\ \therefore\ \mathrm{LHS} &=\mathrm{RHS} \end{aligned}

$\begin{array}{|c|}\hline \color{red}{3. {\ }^{n} C_{r}=\displaystyle\frac{n_{n-1}}{r} C_{r-1}=\frac{n(n-1)_{n-2}}{r(r-1)} C_{r-2}=\ldots}\\\hline\end{array}$

Proof:
\begin{aligned} { }^{n} C_{r}&=\frac{n(n-1)(n-2) \ldots(n-r+1)}{1 \times 2 \times 3 \times \ldots(r-2)(r-1) r}\\\\ &=\frac{n}{r} \times \frac{(n-1)(n-2) \ldots(n-r+1)}{1 \times 2 \times 3 \times \ldots(r-2)(r-1)}\\\\ &=\frac{n}{r}\cdot{ }^{n-1} C_{r-1}\\\\ { }^{n} C_{r}&=\frac{n(n-1)(n-2) \ldots(n-r+1)}{1 \times 2 \times 3 \times \ldots(r-2)(r-1) r}\\\\ &=\frac{n(n-1)}{r(r-1)} \times \frac{(n-2) \ldots(n-r+1)}{1 \times 2 \times 3 \times \ldots(r-2)}\\\\ &=\frac{n(n-1)}{r(r-1)}\cdot{ }^{n-2} C_{r-2}\\\\ &\text{and so on.} \end{aligned}
Ph မျက်နှာပြင်တွင် စာများအပြည့် မပေါ်လျှင် slider ကို ဆွဲ၍ လည်းကောင်း၊ ph ကို အလျားလိုက်ပုံစံ (landscape position) ပြောင်း၍ လည်းကောင်း ဖတ်ရှုနိုင်ပါသည်။

$A, B$ နှင့် $C$ လူသုံးယောက်ရှိသည် ဆိုပါစို့။ $A, B$ နှင့် $C$ ကို မျဉ်းဖြောင့် နေရာချထားနိုင်သည့် အစီအစဉ်မှာ $3! = 6$ ways ဖြစ်ကြောင်း ယခင် post (part 1, part 2, part 3) တို့တွင် တင်ပြခဲ့ပြီးဖြစ်သည်။

$A, B$ နှင့် $C$ ကို မျဉ်းဖြောင့် နေရာချထားနိုင်သည့် အစီအစဉ် (၆) ခုမှာ ABC, BCA, CAB, ACB, BAC, CBA တို့ ဖြစ်သည်။

သို့ရာတွင် အဆိုပါလူသုံးဦးကို စားပွဲဝိုင်းတွင် နေရာချထားသည့်အခါ ABC, BCA, CAB အစီအစဉ်သုံးခုမှာ အတူတူပင်ဖြစ်ကြောင်း တွေ့ရမည်။

အလားတူပင် ACB, BAC, CBA အစီအစဉ်သုံးခုမှာလည်း အတူတူပင်ဖြစ်ကြောင်း တွေ့ရမည်။

မျဉ်းဖြောင့်နေရာချထားမှုတွင် A သည် မည့်သည့်နေရာတွင် ရှိသည့်ဆိုသည့် အခြေအနေက နေရာချထားမှု အစီအစဉ်တွင် ထည့်သွင်းစဉ်းစားရပြီး စက်ဝိုင်းပုံနေရာချထားမှုတွင် ပထမဦးဆုံးနေရာသည် မည်သည့်နေရာတွင်ဖြစ်စေ အရေးပါမှုမရှိတော့ပဲ ၎င်းနောက်မှ အဖွဲ့ဝင်များ၏ အစီအစဉ် အရေအတွက်ကိုသာ ထည့်သွင်း စဉ်းစားရမည် ဖြစ်သည်။ ထို့ကြောင့် လူသုံးဦး၏ စက်ဝိုင်းပုံ နေရာချထားမှု (circular permutation) တွင် ...

ထို့ကြောင့် သုံးယောက်တွင် ပထမဦးဆုံးလူ၏ နေရာချထားမှုအစီအစဉ်ကို ထည့်သွင်းတွက်ချက်ရန် မလိုသောကြောင့် $(3 - 1)! = 2! = 2$ ways သာ ဖြစ်မည်။

ထို့ကြောင့် စက်ဝိုင်းပုံ လမ်းကြောင်းပေါ်တွင် မတူညီသော အရာဝတ္ထု $n$ ကို စီစဉ်နိုင်သော နည်းလမ်းအရေအတွက်မှာ $(n - 1)!$ ဖြစ်သည်။

ဤတွင် လက်ယာရစ် (anticlockwise direction) နှင့် လက်ဝဲရစ် (anticlockwise direction) တို့ကို မတူညီသော အစီအစဉ်များ အဖြစ်သတ်မှတ်ပါသည်။ အကယ်၍ လက်ယာရစ် နှင့် လက်ဝဲရစ် တို့သည် တူညီသော အခြေအနေ (ဥပမာ - ပုတီး) တွင် အရာဝတ္ထု $n$ ကို စီစဉ်နိုင်သော နည်းလမ်း အရေအတွက်မှာ $\displaystyle\frac{(n - 1)!}{2}$ ဖြစ်သည်။

#### CIRCULAR PERMUTATION

If $n$ different things can be arranged in a row, the linear arrangements is $n!$, whereas every linear arrangements have a beginning and end but in circular permutations, there is neither beginning nor end.

When clockwise and anti-clockwise orders are taken as different, the number of circular permutations of $n$ different things taken all at a time is

$\begin{array}{|c|}\hline(n – 1)!\\ \hline\end{array}$

But, when the clockwise and anti-clockwise orders are not different, i.e. the arrangements of beads in a necklace, arrangements of flowers in a garland, etc.

The number of circular permutations of $n$ different things is

$\begin{array}{|c|}\hline\displaystyle\frac{(n - 1)!}{2}\\ \hline\end{array}$

#### RESTRICTED CIRCULAR PERMUTATIONS

If clockwise and anti-clockwise arrangements are taken as different, the number of circular permutations of $n$ different things, taken $r$ at a time is given by

$\begin{array}{|c|}\hline\displaystyle\frac{{}^nP_{r}}{r}\\ \hline\end{array}$

If clockwise and anti-clockwise arrangements are taken as different, the number of circular permutations of $n$ different things, taken $r$ at a time is given by

$\begin{array}{|c|}\hline\displaystyle\frac{{}^nP_{r}}{2r}\\ \hline\end{array}$

အောက်ပါ video နှင့် ယှဉ်တွဲလေ့လာကြည့်ပါ။

Example (1)

At a dinner party 3 men and 3 women sit at a round table. In how many ways can they sit if:

(a) there are no restrictions?

(b) men and women in alternate arrangement?

(c) U Kyaw and U Myo must sit together?

(a) Number of ways = (6 – 1)! = 5!

(b) Number of ways = (3 – 1)! 3!= 2! 3!

(c) Arrangement : (U Kyaw and U Myo) and other 4 members

Number of ways = 2! 4!

EXERCISES

1.          In how many ways, can we arrange 6 different flowers in a circle?

2.          It is decided to label the vertices of a rectangle with the letters A, B, C and D. In how many ways is this possible if:

(a) they are to be in clockwise alphabetical order?

(b) they are to be in alphabetical order?

(c) they are to be in random order?

3.          In how many ways, 6 Myanmars and 5 Koreans can be seated in a round table if

(i) there is no restriction?

(ii) all the 5 Koreans sit together?

(iii) all the 5 Koreans do not sit together?

(iv) no two Koreans sit together?

4.          In how many ways, 20 persons be seated around a round table if there are 10 seats available there?

Ph မျက်နှာပြင်တွင် စာများအပြည့် မပေါ်လျှင် slider ကို ဆွဲ၍ လည်းကောင်း၊ ph ကို အလျားလိုက်ပုံစံ (landscape position) ပြောင်း၍ လည်းကောင်း ဖတ်ရှုနိုင်ပါသည်။

#### PERMUTATIONS WITH RESTRICTIONS

Example (1)

In how many ways can 5 boys and 4 girls be arranged on a bench if

(a) there are no restrictions?

(b) boys and girls in alternate arrangement?

(c) boys and girls are in separate groups?

(d) not all girls sit together?

(e) Thiha and Sandar wish to stay together?

(a)          ယောကျာ်းလေး (၅) ယောက်၊ မိန်းကလေး (၄) ယောက်ကို ခုံတန်းရှည်တစ်ခုတွင် ကျပမ်းထိုင်စေသော် ထိုင်နိုင်သည့် အစီစဉ်ပေါင်း မည်မျှရှိသနည်း။

ကန့်သတ်ချက်မရှိပါ။ စုစုပေါင်း (၉) ယောက်လုံးကို ထိုင်ခိုင်းစေခြင်း ဖြစ်သည်။

$\therefore\quad$ Number of arrangements $= {}^{9}{{P}_{9}} = 9! = 362880$

(b)          ယောကျာ်းလေး နှင့် မိန်းကလေး တစ်လှည့်စီ ထိုင်စေသော် ထိုင်နိုင်သည့် အစီစဉ်ပေါင်း မည်မျှရှိသနည်း။

$\begin{array}{|l|l|l|l|l|l|l|l|l|} \hline \color{red}B_{1} & \color{blue}G_{1} & \color{red}B_{2} &\color{blue} G_{2} & \color{red}B_{3} & \color{blue}G_{3} & \color{red}B_{4} & \color{blue}G_{4} & \color{red}B_{5} \\ \hline \end{array}$

$\therefore\quad$ Number of arrangements $= {}^{5}{{P}_{5}}\times {}^{4}{{P}_{4}} =5! \times 4! = 2880$

(c)          ယောကျာ်းလေး နှင့် မိန်းကလေး အုပ်စုခွဲ၍ ထိုင်စေသော် ထိုင်နိုင်သည့် အစီစဉ်ပေါင်း မည်မျှရှိသနည်း။

$\begin{array}{|l|l|l|l|l||l|l|l|l|} \hline\color{red} B_{1} & \color{red}B_{2} & \color{red}B_{3} & \color{red}B_{4} & \color{red}B_{5} & \color{blue}G_{1} & \color{blue}G_{2} & \color{blue}G_{3} & \color{blue}G_{4} \\ \hline \end{array}$

(OR)

$\begin{array}{|l|l|l||l|l|l|l|l|} \hline \color{blue}G_{1} & \color{blue}G_{2} & \color{blue}G_{3} & \color{blue}G_{4} & \color{red} B_{1} & \color{red}B_{2} & \color{red}B_{3} & \color{red}B_{4} & \color{red}B_{5} \\ \hline \end{array}$

$\therefore\quad$ Number of arrangements $= {}^{5}{{P}_{5}}\times {}^{4}{{P}_{4}} + {}^{4}{{P}_{4}}\times {}^{5}{{P}_{5}} =2\times 5! \times 4! = 5760$

(d)          မိန်းကလေး အားလုံးတစ်စုတည်း မထိုင်စေသည့် အစီစဉ်ပေါင်း မည်မျှရှိသနည်း။

ဤကဲ့သို့သော အစီအစဉ်တွင် ရှုပ်ထွေးမှု အနည်းငယ် ရှိပါသည်။ မိန်းကလေးအားလုံး တစ်စုတည်းမထိုင်စေသည့် အစီစဉ်ပေါင်း ဟု မေးထားပါသည်။ တစ်နည်းဆိုသော် မိန်းကလေး (၄)ယောက်လုံးတစ်စုတည်း မဖြစ်စေသည့် အစီအစဉ် အရေတွက်ပေါင်းကို ရှာရမည်ဖြစ်သည်။ ၃ ယောက် တစ်အုပ်စု၊ (သို့) ၂ ယောက် တစ်အုပ်စု၊ (သို့)တစ်ယောက်ချင်းစီ ထိုင်ခွင့်ရှိသည်။ ဖြစ်နိုင်သော အစီအစဉ်ပေါင်းကို စဉ်းစာရန် များပြားရှုပ်ထွေးလှပါသည်။

ထို့ကြောင့် အခြားတစ်ဘက်မှ ပြန်စဉ်းစားမည်။ မိန်းကလေးအားလုံး တစ်စုတည်း မထိုင်စေရ ဆိုသည်မှာ မိန်းကလေးအားလုံး တစ်စုတည်း ထိုင်စေခြင်း မဟုတ်ဟု ဆိုလိုပါသည်။ ထို့ကြောင့် ထိုင်နိုင်သောအစီအစဉ် စုစုပေါင်းမှ မိန်းကလေးအားလုံး တစ်စုထဲထိုင်စေသည့် အစီအစဉ်ပေါင်းကို ဖယ်ထုတ် (နုတ်) လိုက်လျှင် အဖြေကို အလွယ်တကူရှာနိုင်ပါသည်။

ဦးစွာ မိန်းကလေးအားလုံး တစ်စုတည်းထိုင်စေသည့် အစီအစဉ်ပေါင်း ကိုရှာပါမည်။

$\begin{array}{|l|l|l|l|} \hline\color{blue}G_{1} & \color{blue}G_{2} & \color{blue}G_{3} & \color{blue}G_{4} \\ \hline \end{array}$

Number of arrangements for 4 girls sit together $= {}^{4}{{P}_{4}} = 4! = 362880$

ဆက်လက်၍ မိန်းကလေး (၄) ယောက်တွဲနှင့် ယောက်ျား‌လေး ၅ ယောက်ကို နေရာချနိုင်သော အစီအစဉ်ကို စဉ်းစားပါမည်။ မိန်းကလေး (၄) ယောက်တွဲ တစ်စုသည် အစီအစဉ်အဖွဲ့ဝင်တစ်ခု အဖြစ်သတ်မှတ်ပြီး ယောကျာ်းလေး ၅ ယောက် အစီအစဉ် အဖွဲ့ဝင်ငါးခု၊ ထို့ကြောင့် အစီအစဉ်အဖွဲ့ဝင် ခြောက်ခု အဖြစ်သတ်မှတ်ပါသည်။

$\begin{array}{|l||l|l|l|l|} \hline \color{blue}G_{1} , \color{blue}G_{2} , \color{blue}G_{3} , \color{blue}G_{4} & \color{red}B_{1} & \color{red}B_{2} & \color{red}B_{3} & \color{red}B_{4} & \color{red}B_{5} \\ \hline \end{array}$

Number of arrangements for all boys and a group of 4 girls

$= {}^{4}{{P}_{4}} \times {}^{6}{{P}_{6}}= 4!\times 6!$

$\therefore \quad$ Number of arrangements for all students where not all girls sit together

$= 9!-(4!\times 6!) = 345600$

(e)          သီဟ နှင့် စန္ဒာ နှစ်ယောက်တွဲ ပါဝင်သော အစီအစဉ်ပေါင်း မည်မျှရှိသနည်း။

ဦးစွာ သီဟနှင့် စန္ဒာကို နေရာချထားနိုင်သည့် အစီအစဥ်ကို စဉ်းစားမည်။

$\begin{array}{|l|l|} \hline \color{red}{TH},\color{blue}{SD} & \color{blue}{SD}, \color{red}{TH} \\ \hline \end{array}$

Number of ways to arrange Thiha and Sandar = 2!

အထက်တွင် ဖေါ်ပြခဲ့သည့်နည်းတူ သီဟ နှင့် စန္ဒာကို အစီအစဉ် အဖွဲ့ဝင်တစ်ခုတည်း အဖြစ်သာ စဉ်းစားပေးရမည်။

ကျန်သော (၇) ယောက်အတွက် ကန့်သတ်ချက်မရှိပါ။

$\begin{array}{|l|l|l|l|l|l|l|l|} \hline \color{red}{TH},\color{blue}{SD}\ \text{or}\ \color{blue}{SD}, \color{red}{TH} & S_1 & S_2 & S_3 & S_4 & S_4 & S_6 & S_7\\ \hline \end{array}$

TH, SD and S stands for Thiha, Sandar and student.

$\therefore\quad$ Number of arrangements whereas Thiha and Sandar wish to stay together

$=2!\times 8!= 80640$ ways

Example (2)

Consider the 5 letter arrangements of the word EDUCATORS. How many arrangements

(a) contain only consonants?

(c) contain the letter U?

(d) have the T and O together?

(a)          ဗျည် (၅) လုံးရှိပြီး အခြားကန့်သတ်ချက်မရှိပါ။ There are five conconsonants.

$\therefore\quad$ Number of arrangement $= 5 ! = 120$ ways.

(b)
$\begin{array}{|c|c|c|c|c|} \hline E & & & & S\\ \hline \end{array}$

E နှင့် စပြီး S နှင့် ဆုံးသည့်အတွက် အစ စကားလုံး E သည် နေရာပြောင်းရန် မလိုအပ်သလို အဆုံး စကားလုံး S သည်လည်း နေရာပြောင်းရန် မလိုအပ်ပါ။ ထို့ကြောင့် အစီစဉ်အရေအတွက် ကို စဉ်းစားရာတွင် E နှင့် S ကို ထည့်သွင်းစဉ်းစားရန် မလိုတော့ပါ။ ထို့ကြောင့် E နှင့် S ကြား နေရာ သုံးခုအတွက် ကျန်သောစကားလုံး (၇) လုံးမှ သုံးခုအစီအစဉ်ကို စဉ်စားရမည်။

$\therefore\quad$ Number of arrangement $= {}^{7}{{P}_{3}}=210$ ways.

(c)
$\begin{array}{|c|c|c|c|c|} \hline U & & & & \\ \hline \end{array}$

U ပါဝင်သော စကားလုံး (၅)လုံးကို မေးသည်။ ထို့ကြောင့် U တစ်နေရာအတွက် စဉ်းစားရန်မလိုတော့ပဲ ကျန်လေးနေရာအတွက် ကျန်သောစကားလုံး (၇) လုံးမှ လေးခုအစီအစဉ်ကို စဉ်စားရမည်။ စကားလုံး ၇ လုံးမှာ နေရာလေးခုအတွက် အစီအစဉ်မှာ ${}^{7}{{P}_{4}}$ ဖြစ်သည်။ U ၏ နေရာကို ကန့်သတ်မထားသောကြောင့် U အတွက် ထားနိုင်သောနေရာ (၅) ခု ရှိမည်။

$\therefore\quad$ Number of arrangement $= 5\times {}^{7}{{P}_{4}}=4200$ ways.

(d)
$\begin{array}{|c|c|c|c|c|} \hline TO & & & & \\ \hline \end{array}$

TO နှင့် OT အတွဲလိုက်ပါ ပါဝင်သော စကားလုံး (၅)လုံးကို မေးသည်။ ထို့ကြောင့် TO (သို့) OT တစ်နေရာအတွက် စဉ်းစားရန်မလိုတော့ပဲ ကျန်လေးနေရာအတွက် ကျန်သောစကားလုံး (၇) လုံးမှ လေးခုအစီအစဉ်ကို စဉ်စားရမည်။ စကားလုံး ၇ လုံးမှာ နေရာလေးခုအတွက် အစီအစဉ်မှာ ${}^{7}{{P}_{4}}$ ဖြစ်သည်။ TO နှင့် OT အစီအစဉ်အတွက် စီစဉ်နိုင်သော နည်းလမ်း နှစ်ခုရှိမည်။ TO (သို့) OT ၏ နေရာကို ကန့်သတ်မထားသောကြောင့် ထားနိုင်သောနေရာ (၅) ခု ရှိမည်။

$\therefore\quad$ Number of arrangement $=2\times 5\times {}^{7}{{P}_{4}}=8400$ ways.

Example (3)

Nyi Nyi has 4 identical blue cards and 3 identical red cards. He draws 6 cards at a time. How many arrangements are possible?

အပြာရောင် (၄) ကတ် အနီရောင် (၃) ကတ် စုစုပေါင်း (၇)ကတ်မှ (၆) ကတ်ကို ရွေးထုတ်ရမည် ဖြစ်နိုင်ခြေနှစ်မျိုး ရှိသည်။ (နီ-၃,ပြာ-၃) သို့မဟုတ် (နီ-၂, ပြာ-၄) ဖြစ်သည်။

$\therefore\quad$ Number of arrangement

$\begin{array}{l}=\displaystyle\frac{{6!}}{{3!\ \times 3!}}+\displaystyle\frac{{6!}}{{2!\ \times 4!}}\\\\=15+20\\\\=35 \ \text{ways}\end{array}$ .

EXERCISES

1.          In how many ways can six students and two teachers be arranged in a row if:

(a) the two teachers are together

(b) the two teachers are not together

2.          How many different arrangements of the letters of the word RHOMBUS are possible if:

(a) the two vowels are together

(b) the first and last places are consonants

3.          How many numbers greater than 4000 can be formed using the digits 3, 5, 7, 8, 9 if repetition is not allowed?

4.          If $^{{2n}}{{P}_{n}}=8\times {{\ }^{{2n-1}}}{{P}_{{n-1}}}$, find the value of $n$.

5.          Three blue, three white and three red balls are placed in a row.

(a) How many different arrangements are possible?

(b) In how many of these arrangements are the red balls together?

#### PERMUTATION

A permutation is an ordered selection or arrangement of all or part of a set of objects.

အစုတစ်ခုအတွင်းမှ အစုဝင်အားအားလုံး (သို့) အစုဝင်အချို့ကို နေရာချထားစီစဉ်မှုကို permutation ဟု ခေါ်သည်။

အောက်ပါ ဥပမာကို လေ့လာကြည့်ကြမည်။

အတန်းထဲတွင် ကျောင်းသားဆယ်ယောက်ရှိရာ တစ်ဦးကို အတန်းခေါင်းဆောင်အဖြစ် ရွေးချယ်ပြီး နောက်တစ်ဦးကို ဒုတိယ အတန်းခေါင်းဆောင်အဖြစ် ရွေးချယ်မည်ဆိုလျှင် ရွေးချယ်နိုင်သောနည်းလမ်း မည်မျှရှိမည်နည်း။

အတန်းခေါင်းဆောင် ဖြစ်နိုင်သော ကျောင်းသား အရေအတွက် = $10$ ယောက်

အတန်းခေါင်းဆောင် တစ်ယောက် ရွေးချယ်ပြီးပါက

ဒုတိယ အတန်းခေါင်းဆောင် ဖြစ်နိုင်သော ကျောင်းသားအရေအတွက် = $9$ ယောက်

ထို့ကြောင့် ရွေးချယ်နိုင်သော နည်းလမ်းပေါင်း = $10\times 9 = 90$

ရွေးချယ်နိုင်သော နည်းလမ်းပေါင်း ကို factorial expression ဖြင့် $\displaystyle\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}$ (သို့) $\displaystyle\frac{10!}{8!}=\displaystyle\frac{10!}{(10-2)!}$ ဟု ဖော်ပြနိုင်ပါသည်။

၎င်းကို သင်္ကေတအားဖြင့် ${}^{10}{{P}_{2}}$ ဟု သတ်မှတ်ပါသည်။

#### PERMUTATION OF $n$ OBJECTS TAKEN $r$ AT A TIME WITHOUT REPETITION

The number of permutations of $n$ different things taken $r$ at a time is denoted as ${}^{n}{{P}_{r}}$ or $P(n, r)$ and is defined as :

${ }^{n} P_{r}=\displaystyle\frac{n !}{(n-r) !}=n(n-1)(n-2) \ldots(n-r+1)$

where

$\bullet\quad n$ is a natural number

$\bullet\quad r$ is a whole number

$\bullet\quad r\le n$

မတူညီသောအရာဝတ္ထု $n$ ခုထဲမှ $r$ ခုကို ထုတ်ယူလျှင် ထုတ်ယူနိုင်သော နည်းလမ်းပေါင်း ကို ${}^{n}{{P}_{r}}$ ဟု သတ်မှတ်သည်။

NOTE : ${ }^{n} P_{n} = n!$

#### PERMUTATION WITH REPETITION

The number of permutations of $n$ different things taken $r$ at a time, when each can be repeated any number of times is $n^r$.

Example (1)

(a)          In how many ways can a first, second and third prize be awarded in a class of 10 students?

ကျောင်းသား 10 ယောက် ရှိသော သင်တန်းတစ်ခုတွင် ကျောင်းသား 3 ယောက်ကိုသာ ပထမ၊ ဒုတိယ၊ တတိယဆုများ ချီးမြှင့်မည်ဖြစ်ရာ ရွေးချယ်နိုင်သော အခြေအနေ မည်မျှရှိမည်နည်း။

(b)          In how many ways can a Mathematics prize, a Physics prize and a Chemistry prize be awarded in a class of 10 students?

ကျောင်းသား 10 ယောက် ရှိသော သင်တန်းတစ်ခုတွင် သင်္ချာ၊ ရူပ၊ ဓါတု ထူးချွန်ဆုများ ချီးမြှင့်မည်ဖြစ်ရာ ဆုပေးနိုင်သော နည်းလမ်း မည်မျှရှိမည်နည်း။

Solution

(a)          ကျောင်းသား 10 ယောက်ထဲမှ ကျောင်းသားသုံးယောက်ကိုသာ ပထမ၊ ဒုတိယ၊ တတိယဆုများ ချီးမြှင့်မည်ဖြစ်ရာ 10 ယောက်မှ 3 ယောက်ရွေးချယ်ခြင်းဖြစ်သည်။ ပြန်မထပ်ပါ။

$\therefore$ Number of ways $={ }^{10} P_{3}=10 \times 9 \times 8=720$

(b)          ကျောင်းသား 10 ယောက်ကို သင်္ချာ၊ ရူပ၊ ဓါတု ထူးချွန်ဆုများ ချီးမြင့်မည် ဖြစ်သည်။ မည်သူမဆို ဖြစ်နိုင်သောကြောင့် ပြန်ထပ်နိုင်ပါသည်။

သင်္ချာထူးချွန်ဆု ဆုရနိုင်သော ကျောင်းသားအရေအတွက် = 10

ရူပထူးချွန်ဆု ဆုရနိုင်သော ကျောင်းသားအရေအတွက် = 10

ဓါတုထူးချွန်ဆု ဆုရနိုင်သော ကျောင်းသားအရေအတွက် = 10

$\therefore$ Number of ways $=10^3=1000$.

Example (2)

How many three-digit numbers can be formed from the digits 1, 2, 3, and 4 if (i) repetition is allowed, (ii) repetition is not allowed.

Solution

(i)          If repetition is allowed,

number of 3-digit numbers $= 4^3 = 64$

(ii)          If repetition is not allowed,

number of 3-digit numbers $={ }^{4} P_{3} = 4 × 3 × 2 = 24$

#### PERMUTATION OF ALIKE OBJECTS

The number of permutations of $n$ objects with $n_1$ identical objects of type $1$, $n_2$ identical objects of type $21$,. . . , and $n_k$ identical objects of type $k$ is

$\displaystyle\frac{n !}{n ! n_{2} ! \cdots n_{k} !}$

$1, 3, 5$ ကို ဂဏန်းတစ်လုံးလျှင် တစ်ကြိမ်သာသုံးပြီးတွဲသော် အတွဲပေါင်းမည်မျှ ရှိသနည်း။

$135, 153, 315$, $351, 513, 531$ တို့ဖြစ်ကြသည်။

Permutation ဖြင့်ဖော်ပြသော်၊

ဂဏန်းသုံးလုံးရှိသည့် အနက် သုံးခုလုံး ရွေးချယ်နိုင်သော နည်းလမ်းပေါင်း $={ }^{3} P_{3}=3 !=6$ နည်းရှိပါသည်။

အကယ်၍ $1, 1, 5$ ကို ဂဏန်းတစ်လုံးလျှင် တစ်ကြိမ်သာသုံးပြီးတွဲသော် အတွဲပေါင်းမည်မျှ ရှိသနည်း။

$115, 151, 511$ တို့ဖြစ်ကြသည်။

အထက်ပါ ဥပမာကဲ့သို့ အရာဝတ္ထု $n$ ခု ထဲတွင် ပုံစံတူ အရာဝတ္ထု $p$ ခုရှိလျှင် အရာဝတ္ထု $n$ ခုကို ယှဉ်တွဲနိုင်သော နည်းလမ်းပေါင်းမှာ $\displaystyle\frac{n !}{p !}$ ဖြစ်သည်။ အထက်က ဥပမာကို ပြန်လည်စစ်ဆေး ကြည့်ပါမည်။

$1, 1, 5$ တွင်ပါဝင်သော ကိန်းလုံးအရေအတွက် $= 3$

$1, 1, 5$ တွင်ပါဝင်သော ပုံစံတူ (ထပ်နေသော) ကိန်းလုံး အရေအတွက် $= 2$

$1, 1, 5$ ကို ယှဉ်တွဲနိုင်သော နည်းလမ်း $=\displaystyle\frac{3 !}{2 !}=\displaystyle\frac{3 \times 2 \times 1}{2 \times 1}=3$

Example (3)

How many distinct arrangements can be formed using all the letters of STATISTICS?

Solution

total number of letters = 10

number of A's = 1

number of C's = 1

number of I's = 2

number of S's = 3

number of T's = 3

number of arrangements

$\quad =\displaystyle\frac{10!}{3!\cdot3!\cdot2!}$

$\quad =\displaystyle\frac{3628800}{72}=50400$

Example (4)

How many different ways are there to color a $4\times 4$ grid with red, green, yellow and blue paints, using each color 4 times?

Solution

total number of squares = 16

number of red squares = 4

nnumber of green squares = 4

number of yellow squares = 4

number of blue squares = 4

number of arrangements

$\quad =\displaystyle\frac{16!}{4!\cdot4!\cdot4!\cdot4!}$

$\quad =63063000$

EXERCISES

1.          In how many ways can seven books be arranged in a row?

2.          How many different three-digit numbers can be formed using the digits 1, 2, 3, 5, 7

(a) once only?

(b) if digits can be repeated?

3.          The digits 0 to 9 are used to make 10-digit numbers (not beginning with zero). How many different numbers are possible if:

(a) each digit can be used only once,

(b) each digit can be used any number of times?

4.          In how many ways can a president, a treasurer and a secretary be chosen from among 7 candidates?

5.          A license plate begins with three letters. If the possible letters are A, B, C, D and E, how many different permutations of these letters can be made if no letter is used more than once?

#### COUNTING PRINCIPLES

ရေတွက်ခြင်း (counting) ကို ကျွန်ုပ်တို့ နေ့စဉ်ဆောင်ရွက်နေကြသည်။ ဥပမာအားဖြင့်…

• တစ်ပတ် ဘယ်နှစ်ရက် ရုံးတက်ရသလဲ…။

• တစ်နေ့ အသုံးစရိတ် ဘယ်လောက်ရှိသလဲ။

• ကျောင်းခန်းထဲမှာ ကျောင်းသားအရေ အတွက် ဘယ်လောက်ရှိသလဲ။

စသည်တို့သည် နေ့စဉ် ဆောင်ရွက်နေကျ ရေတွက်ခြင်း လုပ်ငန်းစဉ်များ ဖြစ်ကြသည်။

သို့ရာတွင် ဖြစ်ရပ်များ ပေါင်းစပ် ရေတွက်ရသော ပုံစံများသည် သာမန် ရေတွက်ခြင်းကဲ့သို့ ရိုးရှင်းလွယ်ကူခြင်း မရှိတော့ပေ။ ဥပမာအားဖြင့်

• ထမင်းဆိုင်တွင် အသားဟင်း ဆယ်မျိုးနှင့် အသီးအရွက်ဟင်း ရှစ်မျိုးရှိသည်။ အသားဟင်းနှစ်မျိုး အသီးအရွက် နှစ်မျိုးမှာယူခွင့် ရှိသော် မှာယူခွင့် ရှိသောနည်းလမ်း မည်မျှရှိသနည်း။

• ဘောလုံးသင်း ၁၆ သင်းကို လေးသင်းစီ လေးအုပ်စုခွဲလျှင် ဖြစ်နိုင်သောနည်းလမ်း မည်မျှရှိသနည်း။

စသော အခြေအနေမျိုးများတွင် ရေတွက်ခြင်း လုပ်ငန်းစဉ်များမှာ ရိုးရှင်းလွယ်ကူမှု မရှိတော့ပေ။ အထက်ပါ ရေတွက်ခြင်းမျိုးများအတွက် ဖြစ်နိုင်သော နည်းလမ်းများ ရှာယူရန် အောက်ပါ ဥပဒေသများကို သိရှိထားရပေမည်။

#### THE PRODUCT PRINCIPLE (AND RULE)

The number of ways of in which both choice $A$ and choice $B$ can be made is the product of the number of options for $A$ and the number of options for $B$.
$n(A\ \text{AND}\ B) = n(A) \times n(B)$

ဖြစ်ရပ် $A$ ဖြစ်နိုင်သော အရေအတွက် = $n(A)$ နှင့် ဖြစ်ရပ် $B$ ဖြစ်နိုင်သော အရေအတွက် = n(B) ဟု သတ်မှတ်မည်။ ထိုသို့ဆိုလျင် ဖြစ်ရပ် $A$ နှင့် ဖြစ်ရပ် $B$ နှစ်ခုတွဲဖြစ်ရပ် (နှစ်ခု တပြိုင်နက်) ဖြစ်နိုင်သော အရေအတွက်မှာ $n(A)\times n(B)$ ဖြစ်သည်။

ဖြစ်ရပ် တစ်ခုသည် တစ်ခုကိုတစ်ခု မှီခို ဆက်စပ်နေလျှင် (ဖြစ်ရပ် တစ်ခုဖြစ်လျှင် အခြားဖြစ်ရပ်တစ်ခု မဖြစ်နိုင်တော့သည့် အခြေအနေ) mutually exclusive events ဟု ခေါ်သည်။

ဥပမာ။ ဘတ်(စ)ကားစီး၍ ရုံးသို့သွားခြင်း၊ taxi စီး၍ ရုံးသို့သွားခြင်း၊ စာမေးပွဲအောင်ခြင်း၊ စာမေးပွဲကျခြင်း၊

#### THE ADDITION PRINCIPLE (OR RULE)

The number of ways of in which either choice $A$ or choice $B$ can be made is the sum of the number of options for $A$ and the number of options for $B$.

If A and B are mutually exclusive then
$n(A\ \text{OR}\ B) = n(A) + n(B)$

ဖြစ်ရပ် $A$ ဖြစ်နိုင်သော အရေအတွက် =$n(A)$ နှင့် ဖြစ်ရပ် $B$ ဖြစ်နိုင်သော အရေအတွက် = $n(B)$ ဟု သတ်မှတ်မည်။ ထိုသို့ဆိုလျင် ဖြစ်ရပ် $A$ နှင့် ဖြစ်ရပ် $B$ တစ်ခုမဟုတ်တစ်ခု ဖြစ်နိုင်သော နည်းလမ်းပေါင်းမှာ $n(A) + n(B)$ ဖြစ်သည်။

#### FACTORIAL NOTATION

Factorial notation uses an exclamation mark ! as a short way to write the product of consecutive positive integers.

ဆက်တိုက်ဖြစ်သော အပေါင်းကိန်းပြည့်များ မြှောက်ခြင်းကို factorial ဟု ခေါ်သည်။ မှတ်ရလွယ်ကူစေရန် အတွက် အပေါင်းကိန်းပြည့်များကို ကြီးစဉ်ငယ်လိုက် စီလေ့ရှိသည်။

Examples

$3! = 3 \times 2 \times 1 = 6$ [$3!$ = 3 factorial ဟုဖတ်သည်။]

$10! = 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 3628800$

$n! = n (n – 1)(n – 2)(n – 3)… 3 \times 2 \times 1$

Note: $0! = 1, 1! = 1, n! = n (n – 1)!$

နမူနာပုစ္ဆာ တစ်ပုဒ် လေ့လာကြည့်ကြမည်။

သင့်တွင် အရောင်မတူသော T-Shirt ငါးထည်ရှိသည်။ တစ်နေ့တစ်ရောင် နှုန်းဖြင့် အရောင်မထပ်ပဲ ငါးရက်ဆက်တိုက် ဝတ်ဆင်လိုသော် ဝတ်ဆင်နိုင်သောနည်းလမ်း မည်မျှရှိသနည်း။

ပထမနေ့ ရွေးချယ်နိုင်သော အရေအတွက် = $5$ (ကြိုက်ရာ ရွေးချယ်နိုင်သည်)

ဒုတိယနေ့ ရွေးချယ်နိုင်သော အရေအတွက် = $4$ (ပထမနေ့ ဝတ်ထားသော တစ်ရောင် ပယ်)

တတိယနေ့ ရွေးချယ်နိုင်သော အရေအတွက် = $3$ (ရှေ့နှစ်ရက် ဝတ်ထားသော နှစ်ရောင် ပယ်)

စတုတ္ထနေ့ ရွေးချယ်နိုင်သော အရေအတွက် = $2$ (ရှေ့သုံးရက် ဝတ်ထားသော သုံးရောင် ပယ်)

ပဉ္စမနေ့ ရွေးချယ်နိုင်သော အရေအတွက် = $1$ (တစ်ရောင်တည်းသာ ကျန်)

စုစုပေါင်း ရွေးချယ် ဝတ်ဆင်နိုင်သော နည်းလမ်း = $5 \times 4 \times 3 \times 2 \times 1 = 120$ ways

ထို့ကြောင့် စုစုပေါင်း ရွေးချယ် ဝတ်ဆင်နိုင်သော နည်းလမ်း = $5!$ ways

Example (1)

There are four roads from town $A$ to town $B$, and three roads from town $B$ to town $C$. How many different ways are there to travel by road from $A$ to $B$ to $C$?

$A$ မှ $B$ သို့ သွားနိုင်သော လမ်းလေးသွယ်ရှိပြီး၊ $B$ မှ $C$ သို့ သွားနိုင်သော လမ်းသုံးသွယ် ရှိလျှင် $A$ မှ $B$ ကို ဖြတ်ပြီး $C$ သို့ သွားနိုင်သော လမ်းကြောင်း မည်မျှ ရှိသနည်း။

$\therefore$ Number of ways to travel by road from $A$ to $B$ to $C$ = $4 \times 3 = 12$ ways.

Example (2)

An examination has ten questions in section A and four questions in section B. How many different ways are there to choose questions if you must:

(a) choose one question from each section?

(b) choose a question from either section A or section B?

စာမေးပွဲမေးခွန်း တစ်ခုတွင် section A ၌ မေးခွန်း (၁၀)ပုဒ်ပါဝင်ပြီး section B ၌ မေးခွန်း (၄)ပုဒ် ပါဝင်သော်

(a) အပိုင်းတစ်ခုမှ မေးခွန်း တစ်ပုဒ်စီ ဖြေရမည် ဆိုလျှင် ဖြေဆိုနိုင်သော နည်းလမ်း မည်မျှရှိသနည်း။

(b) နှစ်သက်ရာ အပိုင်းမှ မေးခွန်းတစ်ပုဒ်သာ ဖြေရမည်ဆိုလျှင် ဖြေဆိုနိုင်သော နည်းလမ်း မည်မျှရှိသနည်း။

(a)     choosing one question from section A = 10 ways

choosing one question from section B = 4 ways

$\quad\quad \text{choosing one question from each section}$

$\quad= \text{choosing one question each from section}$

$\quad\quad A\ \text{AND section}\ B$

$\quad= 10 \times 4$

$\quad= 40\ \text{ways.}$

$\text{(b) choosing a question from either section}$

$\quad\quad A\ \text{OR section}\ B= 10 + 4 = 14\ \text{ways.}$

Example (3)

Find the unit digit of $1! + 2! + 3! + 4! + … + 10!$.

For $n\ge 5, n!$ cotains a factor $(5\times 2)$ or $10$.

Thus, For $n\ge 5$, n! is a multiple of $10$ and its unit digit is always $0$.

$\therefore \quad$ the unit digit of $1! + 2! + 3! + 4! + … + 10!$

$\quad =$ the unit digit of $1! + 2! + 3! + 4!$

$\quad =$ the unit digit of the sum $1 + 2 + 6 + 4$

$\quad = 3$

EXERCISES

1.          If there are 10 ways of doing $A, 3$ ways of doing $B$ and 19 ways of doing $C$, how many ways are there of doing

(a) (i) both $A$ and $B ?$ (ii) both $B$ and $C ?$

(b) (i) either $A$ or $B ?$ (ii) either $A$ or $C ?$

2.          If there are 4 ways of doing $A, 7$ ways of doing $B$ and 5 ways of doing $C$, how many ways are there of doing

(a) all of $A, B$ and $C ?$

(b) exactly one of $A, B$ or $C ?$

3.          How many different paths are there

(a) from $A$ to $C ?$

(b) from $C$ to $E ?$

(c) from $A$ to $E ?$

4.          There are five roads from town $A$ to town $B$, and two roads from town $B$ to town $C$. In how many different ways can you travel by road from $A$ to $B$ to $C ?$

5.          Find $x,$ if $\displaystyle\frac{x}{5 !}+\displaystyle\frac{x}{6 !}=\displaystyle\frac{1}{7 !}$.

6.          Simplify $\displaystyle\frac{(2 n) !}{n !}$.

7.          If the product of factorials of $n$ consecutive positive integers be a single-digit number, find the maximum value of $n$.

8.          If the sum of the factorials of $N$ consecutive natural numbers be a three-digit number, find the maximum value of $N$.

9.          Find the number of positive integral solutions of $x+y=10$.

10.          A question paper has two sections $A$ and $B$ respectively. Section $A$ has 7 questions whereas section $B$ has 6 questions, respectively. In how many ways a student can attempt for a single question either from section $A$ or section $B ?$