# Logarithms : Exercise (3.4) - Solutions

1.          If $\log _{a} b+\log _{b} a^{2}=3,$ find $b$ in terms of $a$.

Show/Hide Solution

$\begin{array}{l}{{\log }_{a}}\,b+{{\log }_{b}}\,{{a}^{2}}=3\\\\{{\log }_{a}}\,b+2{{\log }_{b}}a=3\\\\{{\log }_{a}}\,b+\displaystyle\frac{2}{{{{{\log }}_{a}}\,b}}=3\\\\\text{Let}\ {{\log }_{a}}\,b=u,\ \text{then}\\\\u+\displaystyle\frac{2}{u}=3\\\\\therefore \ \ {{u}^{2}}+2=3u\\\\\therefore \ \ {{u}^{2}}-3u+2=0\\\\\therefore \ \ (u-1)(u-2)=0\\\\\therefore \ \ {{\log }_{a}}\,b=1\ \text{or}\ {{\log }_{a}}\,b=2\\\\\therefore \ \ \,b=a\ \text{or}\ \,b={{a}^{2}}\end{array}$

2.          Show that

(a) $\log _{4} x=2 \log _{16} x$.

(b) $\log _{b} x=3 \log _{b^{3}} x \quad$.

(c) $\log _{2} x=\left(1+\log _{2} 3\right) \log _{6} x$.

Show/Hide Solution

$\begin{array}{l}(\text{a})\ \ \ \text{LHS}={{\log }_{4}}x\\\\\ \ \ \ \ \ \text{RHS}=2{{\log }_{{16}}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =2{{\log }_{{{{4}^{2}}}}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{2}{2}{{\log }_{4}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{\log }_{4}}x\\\\\ \ \therefore \ \ {{\log }_{4}}x=2{{\log }_{{16}}}x\\\\\\(\text{b})\ \ \text{LHS}={{\log }_{b}}x\\\\\ \ \ \ \ \text{RHS}=3{{\log }_{{{{b}^{3}}}}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{3}{3}{{\log }_{b}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{\log }_{b}}x\\\\\ \ \therefore \ \ {{\log }_{b}}x=3{{\log }_{{{{b}^{3}}}}}x\\\\\\(\text{c})\ \ \text{LHS}={{\log }_{2}}x\\\\\ \ \ \ \ \text{RHS}=\left( {1+{{{\log }}_{2}}3} \right){{\log }_{6}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\left( {{{{\log }}_{2}}2+{{{\log }}_{2}}3} \right){{\log }_{6}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{\log }_{2}}6\cdot {{\log }_{6}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{1}{{{{{\log }}_{6}}2}}\cdot {{\log }_{6}}x\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ =\displaystyle\frac{{{{{\log }}_{6}}x}}{{{{{\log }}_{6}}2}}\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{\log }_{2}}x\\\\\ \ \therefore \ \ {{\log }_{2}}x=\left( {1+{{{\log }}_{2}}3} \right){{\log }_{6}}x\\\end{array}$

3.          If $a=\log _{b} c, b=\log _{c} a$ and $c=\log _{a} b,$ prove that $a b c=1$.

Show/Hide Solution

$\begin{array}{l}\ \ \ a={{\log }_{b}}c,\ b={{\log }_{c}}a,\ c={{\log }_{a}}b\\\\\therefore \ \ abc={{\log }_{b}}c\cdot \ {{\log }_{c}}a\cdot {{\log }_{a}}b\\\\\therefore \ \ abc=\displaystyle\frac{{\log c}}{{\log b}}\cdot \ \displaystyle\frac{{\log a}}{{\log c}}\cdot \displaystyle\frac{{\log b}}{{\log a}}\ \left[ {\because \ \text{by L8}} \right]\\\\\therefore \ \ abc=1\end{array}$

4.          Show that

(a) $\left(\log _{10} 4-\log _{10} 2\right) \log _{2} 10=1$.

(b) $2 \log _{2} 3\left(\log _{9} 2+\log _{9} 4\right)=3$.

Show/Hide Solution

$\begin{array}{l}\text{(a)}\ \ \ \left( {{{{\log }}_{{10}}}4-{{{\log }}_{{10}}}2} \right)\cdot {{\log }_{2}}10\\\\\ \ \ =\ {{\log }_{{10}}}\displaystyle\frac{4}{2}\cdot {{\log }_{2}}10\\\\\ \ \ =\ {{\log }_{{10}}}2\cdot {{\log }_{2}}10\\\\\ \ \ =\ {{\log }_{{10}}}2\cdot \displaystyle\frac{1}{{{{{\log }}_{{10}}}2}}\\\\\ \ \ =\ 1\\\\\\\text{(b)}\ \ \ 2\cdot {{\log }_{2}}3\cdot \left( {{{{\log }}_{9}}2+{{{\log }}_{9}}4} \right)\\\\\ \ \ ={{\log }_{2}}{{3}^{2}}\cdot {{\log }_{9}}(2\times 4)\\\\\ \ \ ={{\log }_{2}}9\cdot {{\log }_{9}}8\\\\\ \ \ ={{\log }_{2}}9\cdot {{\log }_{9}}{{2}^{3}}\\\\\ \ \ ={{\log }_{2}}9\cdot 3{{\log }_{9}}2\\\\\ \ \ =3\cdot \displaystyle\frac{1}{{{{{\log }}_{9}}2}}\cdot {{\log }_{9}}2\\\\\ \ \ =3\end{array}$

5.          Compute

(a) $3^{\log _{2} 5}-5^{\log _{2} 3}$

(b) $4^{\log _{2} 3}$

(c) $2^{\log _{2 \sqrt{2}} 27}$

Show/Hide Solution

$\begin{array}{l}\text{(a)}\ \ \ {{3}^{{{{{\log }}_{2}}\,5}}}-{{5}^{{{{{\log }}_{2}}\,3}}}\\\\\ \ \ \ ={{3}^{{{{{\log }}_{2}}\,5}}}-{{3}^{{{{{\log }}_{2}}\,5}}}\\\\\ \ \ \ =0\\\\\text{(b)}\ \ \ {{4}^{{{{{\log }}_{2}}3}}}\\\\\ \ \ \ ={{\left( {{{2}^{2}}} \right)}^{{{{{\log }}_{2}}3}}}\\\\\ \ \ \ ={{\left( {{{2}^{{{{{\log }}_{2}}3}}}} \right)}^{2}}\\\\\ \ \ \ ={{3}^{2}}\\\\\ \ \ \ =9\\\\\\\text{(c)}\ \ \ {{2}^{{{{{\log }}_{{2\sqrt{2}}}}27}}}\\\\\ \ \ \ ={{2}^{{{{{\log }}_{{{{2}^{{3/2}}}}}}{{3}^{3}}}}}\\\\\ \ \ \ ={{2}^{{\frac{2}{3}\times 3{{{\log }}_{2}}3}}}\\\\\ \ \ \ ={{2}^{{2{{{\log }}_{2}}3}}}\\\\\ \ \ \ ={{\left( {{{2}^{{{{{\log }}_{2}}3}}}} \right)}^{2}}\\\\\ \ \ \ ={{3}^{2}}\\\\\ \ \ \ =9\end{array}$

6.          Using properties of logarithm, solve the following equations.

(a) ${{\log }_{x}}10+{{\log }_{{{{x}^{2}}}}}10=2$

(b) $25^{\log _{10} x}=5+4 x^{\log _{10} 5}$

(c) $9^{\log _{3}\left(\log _{2} x\right)}=\log _{2} x-\left(\log _{2} x\right)^{2}+1$

(d) $\log _{2} x+\log _{4} x+\log _{16} x=7$

(e) $\log _{7} 2+\log _{49} x=\log _{\frac{1}{7}} \sqrt{3}$

(f) $\log _{3} x-\log _{\frac{1}{3}} x^{2}=6$

(g) ${{\log }_{x}}(9{{x}^{2}})\cdot {{\left( {{{{\log }}_{3}}x} \right)}^{2}}=4$

No (6) သည် ပြဌာန်းစာအုပ်တွင် မပါဝင်ပါ။ Change of Base နှင့် သက်ဆိုင်သော ဉာဏ်စမ်းမေးခွန်း များကို ထပ်ဆင့်လေ့ကျင့်နိုင်ရန် ပေါင်းထည့်ပေးထားခြင်း ဖြစ်ပါသည်။

Show/Hide Solution

$\begin{array}{l} \text{(a)}\ \ {{\log }_{x}}10+{{\log }_{{{{x}^{2}}}}}10=2\\\\ \ \ \ \ \ {{\log }_{x}}10+\displaystyle\frac{1}{2}{{\log }_{x}}10=2\\\\ \ \ \ \ \ \displaystyle\frac{3}{2}{{\log }_{x}}10=2\\\\ \ \ \ \ \ {{\log }_{x}}10=\displaystyle\frac{4}{3}\\\\ \ \ \ \ \ {{x}^{{\frac{4}{3}}}}=10\\\\ \ \ \ \ \ x={{10}^{{\frac{3}{4}}}}\\\\\\ \text{(b)}\ \ {{25}^{{{{{\log }}_{{10}}}x}}}=5+4{{x}^{{{{{\log }}_{{10}}}5}}}\\\\ \ \ \ \ \ {{\left( {{{5}^{2}}} \right)}^{{{{{\log }}_{{10}}}x}}}=5+4\cdot {{5}^{{{{{\log }}_{{10}}}x}}}\\\\ \ \ \ \ \ {{5}^{{2\cdot }}}^{{{{{\log }}_{{10}}}x}}=5+4\cdot {{5}^{{{{{\log }}_{{10}}}x}}}\\\\ \ \ \ \ \ {{\left( {{{5}^{{{{{\log }}_{{10}}}x}}}} \right)}^{2}}-4\cdot {{5}^{{{{{\log }}_{{10}}}x}}}-5=0\\\\ \ \ \ \ \ \text{Let}\ {{5}^{{{{{\log }}_{{10}}}x}}}=u,\ \text{then}\\\\ \ \ \ \ \ {{u}^{2}}-4u-5=0\\\\ \ \ \ \ \ (u-5)(u+1)=0\\\\ \ \therefore \ \ \ u=5\ \text{or}\ u=-1\\\\ \ \therefore \ \ \ {{5}^{{{{{\log }}_{{10}}}x}}}=5\ \text{or}\ {{5}^{{{{{\log }}_{{10}}}x}}}=-1\\\\ \ \ \ \ \ \text{Since}\ {{5}^{{{{{\log }}_{{10}}}x}}}>0,\ {{5}^{{{{{\log }}_{{10}}}x}}}=-1\ \text{is}\ \text{impossible}\text{.}\\\\ \ \therefore \ \ \ {{5}^{{{{{\log }}_{{10}}}x}}}=5\\\\ \ \therefore \ \ \ {{\log }_{{10}}}x=1\\\\ \ \therefore \ \ \ x=10\\\\\\ \text{(c)}\ \ {{9}^{{{{{\log }}_{3}}\left( {{{{\log }}_{2}}x} \right)}}}={{\log }_{2}}x-{{\left( {{{{\log }}_{2}}x} \right)}^{2}}+1\\\\ \ \ \ \ \ {{\left( {{{{\log }}_{2}}x} \right)}^{{{{{\log }}_{3}}9}}}={{\log }_{2}}x-{{\left( {{{{\log }}_{2}}x} \right)}^{2}}+1\\\\ \ \ \ \ \ {{\left( {{{{\log }}_{2}}x} \right)}^{{{{{\log }}_{3}}{{3}^{2}}}}}={{\log }_{2}}x-{{\left( {{{{\log }}_{2}}x} \right)}^{2}}+1\\\\ \ \ \ \ \ {{\left( {{{{\log }}_{2}}x} \right)}^{2}}={{\log }_{2}}x-{{\left( {{{{\log }}_{2}}x} \right)}^{2}}+1\\ \ \ \ \ \ 2{{\left( {{{{\log }}_{2}}x} \right)}^{2}}-{{\log }_{2}}x-1=0\\\\ \ \ \ \ \ \left( {2\cdot {{{\log }}_{2}}x+1} \right)\left( {{{{\log }}_{2}}x-1} \right)=0\\\\ \ \ \ \ \ {{\log }_{2}}x=-\displaystyle\frac{1}{2}\ \text{or}\ {{\log }_{2}}x=1\\\\ \ \therefore \ \ \ x={{2}^{{-\frac{1}{2}}}}\ \text{or}\ x=2\\\\ \ \therefore \ \ \ x=\displaystyle\frac{1}{{\sqrt{2}}}\ \text{or}\ x=2\\\\\\ \text{(d)}\ \ {{\log }_{2}}x+{{\log }_{4}}x+{{\log }_{{16}}}x=7\\\\ \ \ \ \ \ {{\log }_{2}}x+{{\log }_{{{{2}^{2}}}}}x+{{\log }_{{{{2}^{4}}}}}x=7\\\\ \ \ \ \ \ {{\log }_{2}}x+\displaystyle\frac{1}{2}{{\log }_{2}}x+\displaystyle\frac{1}{4}{{\log }_{2}}x=7\\\\ \ \ \ \ \ \displaystyle\frac{7}{4}{{\log }_{2}}x=7\\\\ \ \ \ \ \ {{\log }_{2}}x=4\\\ \therefore \ \ \ x={{2}^{4}}=16\\\\\\ \text{(e)}\ \ {{\log }_{7}}2+{{\log }_{{49}}}x={{\log }_{{\displaystyle\frac{1}{7}}}}\sqrt{3}\\\\ \ \ \ \ \ {{\log }_{7}}2+{{\log }_{{{{7}^{2}}}}}x={{\log }_{{{{7}^{{-1}}}}}}\sqrt{3}\\\\ \ \ \ \ \ {{\log }_{7}}2+\displaystyle\frac{1}{2}{{\log }_{7}}x=-{{\log }_{7}}\sqrt{3}\\\\ \ \ \ \ \ {{\log }_{7}}2+{{\log }_{7}}{{x}^{{\frac{1}{2}}}}={{\log }_{7}}{{3}^{{-\frac{1}{2}}}}\\\\ \ \ \ \ \ {{\log }_{7}}2{{x}^{{\frac{1}{2}}}}={{\log }_{7}}\displaystyle\frac{1}{{{{3}^{{\frac{1}{2}}}}}}\\\\ \ \ \therefore \ \ 2{{x}^{{\frac{1}{2}}}}=\displaystyle\frac{1}{{{{3}^{{\frac{1}{2}}}}}}\\\\ \ \ \therefore \ \ 4x=\displaystyle\frac{1}{3}\\\ \ \therefore \ \ x=\displaystyle\frac{1}{{12}}\\\\\\ \text{(f)}\ \ {{\log }_{3}}x-{{\log }_{{\displaystyle\frac{1}{3}}}}{{x}^{2}}=6\\\\ \ \ \ \ \ {{\log }_{3}}x-{{\log }_{{{{3}^{{-1}}}}}}{{x}^{2}}=6\\\\ \ \ \ \ \ {{\log }_{3}}x+{{\log }_{3}}{{x}^{2}}=6\\\\ \ \ \ \ \ {{\log }_{3}}{{x}^{3}}=6\\\\ \ \ \ \ \ {{x}^{3}}={{3}^{6}}\\\\ \ \therefore \ \ \ x={{3}^{2}}=9\\\\\\ \text{(g)}\ \ {{\log }_{x}}(9{{x}^{2}})\cdot {{\left( {{{{\log }}_{3}}x} \right)}^{2}}=4\\\\ \ \ \ \ \ \displaystyle\frac{{{{{\log }}_{3}}(9{{x}^{2}})}}{{{{{\log }}_{3}}x}}\cdot {{\left( {{{{\log }}_{3}}x} \right)}^{2}}=4\\\\ \ \ \ \ \ {{\log }_{3}}(9{{x}^{2}})\cdot \left( {{{{\log }}_{3}}x} \right)=4\\\\ \ \ \ \ ({{\log }_{3}}9+{{\log }_{3}}{{x}^{2}})\cdot \left( {{{{\log }}_{3}}x} \right)=4\\\\ \ \ \ \ ({{\log }_{3}}{{3}^{2}}+2{{\log }_{3}}x)\cdot \left( {{{{\log }}_{3}}x} \right)=4\\\\ \ \ \ \ (2+2{{\log }_{3}}x)\cdot \left( {{{{\log }}_{3}}x} \right)=4\\\\ \ \therefore \ \ (1+{{\log }_{3}}x)\cdot \left( {{{{\log }}_{3}}x} \right)=2\\\\ \ \therefore \ \ {{\left( {{{{\log }}_{3}}x} \right)}^{2}}+\left( {{{{\log }}_{3}}x} \right)-2=0\\\\ \ \therefore \ \ ({{\log }_{3}}x+2)({{\log }_{3}}x-1)=0\\\\ \ \therefore \ \ \ {{\log }_{3}}x=-2\ \text{or}\ {{\log }_{3}}x=1\\\\ \ \therefore \ \ \ x={{3}^{{-2}}}\ \text{or}\ x=3\\\\ \ \therefore \ \ \ x=\displaystyle\frac{1}{9}\ \text{or}\ x=3 \end{array}$