1.
Complete each sentence.
$\text{(a)}\quad$ The slope of the line passing through two points $(-6, 0)$ and $(2, 3)$ is __________.
$\text{(b)}\quad$ The slope of the line joining the point $(1, 2)$ and the origin is __________.
$\text{(c)}\quad$ A vertical line has __________ slope.
$\text{(d)}\quad$ A horizontal line has __________ slope .
$\text{(a)}\quad$ The slope of the line passing through two points $(-6, 0)$ and $(2, 3)$ is __________.
$\text{(b)}\quad$ The slope of the line joining the point $(1, 2)$ and the origin is __________.
$\text{(c)}\quad$ A vertical line has __________ slope.
$\text{(d)}\quad$ A horizontal line has __________ slope .
Show/Hide Solution
2.
For each graph state whether the slope is positive, negative, zero or undefined, then find the slope if possible.
Show/Hide Solution
3.
Which pairs of points given below will determine horizontal lines?
Which ones vertical lines? Determine the slope of each line without calculation.
$\displaystyle \begin{array}{l} \text{(a)}\quad (5,2)\ \text{and}\ (-3,2) \\\\ \text{(b)}\quad (0,5)\ \text{and}\ (-1,5)\\\\ \text{(c)}\quad (2,3)\ \text{and}\ (2,6) \\\\ \text{(d)}\quad (0,0)\ \text{and}\ (0,-2)\\\\ \text{(e)}\quad (1,-2)\ \text{and}\ (-3,-2)\\\\ \text{(f)}\quad (a,b)\ \text{and}\ (a,c) \end{array}$
$\displaystyle \begin{array}{l} \text{(a)}\quad (5,2)\ \text{and}\ (-3,2) \\\\ \text{(b)}\quad (0,5)\ \text{and}\ (-1,5)\\\\ \text{(c)}\quad (2,3)\ \text{and}\ (2,6) \\\\ \text{(d)}\quad (0,0)\ \text{and}\ (0,-2)\\\\ \text{(e)}\quad (1,-2)\ \text{and}\ (-3,-2)\\\\ \text{(f)}\quad (a,b)\ \text{and}\ (a,c) \end{array}$
Show/Hide Solution
4.
Find the slope of each line which contains each pair of points listed below.
$ \displaystyle \begin{array}{l} \text{(a) }\quad A(0,0)\ \text{ and }\ B(8,4)\\\\ \text{(b) }\quad C(10,5)\ \text{ and }\ D(6,8)\\\\ \text{(c) }\quad E(-5,7)\ \text{ and }\ F(-2,-4)\\\\ \text{(d) }\quad G(23,15)\ \text{ and }\ H(18,5)\\\\ \text{(e) }\quad I(-2,0)\ \text{and }\ J(0,\ 6)\\\\ \text{(f) }\quad K(15,6)\ \text{ and }\ L(-2,23) \end{array}$
$ \displaystyle \begin{array}{l} \text{(a) }\quad A(0,0)\ \text{ and }\ B(8,4)\\\\ \text{(b) }\quad C(10,5)\ \text{ and }\ D(6,8)\\\\ \text{(c) }\quad E(-5,7)\ \text{ and }\ F(-2,-4)\\\\ \text{(d) }\quad G(23,15)\ \text{ and }\ H(18,5)\\\\ \text{(e) }\quad I(-2,0)\ \text{and }\ J(0,\ 6)\\\\ \text{(f) }\quad K(15,6)\ \text{ and }\ L(-2,23) \end{array}$
Show/Hide Solution
5.
Find the slope of each line which contains each pair of points listed below.
$ \displaystyle \begin{array}{l} \text{(a) }\quad E\left( {\displaystyle\frac{3}{4},\frac{4}{5}\text{ }} \right)\ \text{and }\ F\left( {-\displaystyle\frac{1}{2},\frac{7}{5}} \right)\\\\ \text{(b) }\quad G(-a,b)\ \text{ and }\ H(3a,2b)\\\\ \text{(c) }\quad L\left( {\sqrt{{12}},\sqrt{{18}}} \right)\ \text{ and }\ M\left( {\sqrt{{27}},\sqrt{8}} \right)\\\\ \text{(d) }\quad P(0,a)\ \text{ and }\ Q(a,0) \end{array}$
$ \displaystyle \begin{array}{l} \text{(a) }\quad E\left( {\displaystyle\frac{3}{4},\frac{4}{5}\text{ }} \right)\ \text{and }\ F\left( {-\displaystyle\frac{1}{2},\frac{7}{5}} \right)\\\\ \text{(b) }\quad G(-a,b)\ \text{ and }\ H(3a,2b)\\\\ \text{(c) }\quad L\left( {\sqrt{{12}},\sqrt{{18}}} \right)\ \text{ and }\ M\left( {\sqrt{{27}},\sqrt{8}} \right)\\\\ \text{(d) }\quad P(0,a)\ \text{ and }\ Q(a,0) \end{array}$
Show/Hide Solution
6.
Find $p, q, r$ in the followings:
$\text{(a) }\quad$ The slope joining the points $(0,3)$ and $(1,p)$ is $5$.
$\text{(b) }\quad$ The slope joining the points $(-2, q)$ and $(0,1)$ is $-1$.
$\text{(c) }\quad$ The slope joining the points $(-4, -2)$ and $(r, -6)$ is $-6$.
$\text{(a) }\quad$ The slope joining the points $(0,3)$ and $(1,p)$ is $5$.
$\text{(b) }\quad$ The slope joining the points $(-2, q)$ and $(0,1)$ is $-1$.
$\text{(c) }\quad$ The slope joining the points $(-4, -2)$ and $(r, -6)$ is $-6$.
Show/Hide Solution
7.
Find the slope corresponding to the following events.
$\text{(a) }\quad$ A man climbs $10$ m for every $200$ meters horizontally.
$\text{(b) }\quad$ A motorbike rises $20$ km for every $100$ kilometers horizontally.
$\text{(c) }\quad$ A plane takes off $35$ km for every $5$ kilometers horizontally.
$\text{(d) }\quad$ A submarine descends $120$ m for every $15$ meters horizontally.
$\text{(a) }\quad$ A man climbs $10$ m for every $200$ meters horizontally.
$\text{(b) }\quad$ A motorbike rises $20$ km for every $100$ kilometers horizontally.
$\text{(c) }\quad$ A plane takes off $35$ km for every $5$ kilometers horizontally.
$\text{(d) }\quad$ A submarine descends $120$ m for every $15$ meters horizontally.
Show/Hide Solution
8.
A train climbs a hill with slope $0.05$. How far horizontally has the train travelled after rising $15$ meters?
Show/Hide Solution
9.
The vertices of a triangle are the points $A(-2,3)$, $B(5,-4)$ and $C(1,8)$.
Find the slope of each side and perimeter of a triangle.
Show/Hide Solution
10.
The vertices of a parallelogram are the points $P(1,4)$, $Q(3,2)$, $R(4,6)$ and $S(2,8)$. Find the slope of each side.
Show/Hide Solution
11.
A line having a slope of $-1$ contains the point $(-2,5)$. What is the $y$-coordinate of the point on that line whose $x$-coordinate is $8$?
Show/Hide Solution
COMBINATIONA combination is a selection of objects without regard to order or arrangement.
The different groups or selections of a number of things taken some or all of them at a time are called combinations.
|
---|
Combination နှင့် Permutation မတူညီသော အချက်မှာ
- အစုတစ်ခုအတွင်းမှာ အစုပိုင်းတစ်ခုကို ရွေးချယ်လိုက်သည် ဆိုပါစို့…။
- Permutation သည် ရွေးချယ်လိုက်သော အစုပိုင်းအတွင်းရှိ အစုဝင်တစ်ခုချင်းစီ၏ အစီအစဉ်ကို ထည့်သွင်း စဉ်းစားသည်။
- Combination သည် ရွေးချယ်လိုက်သော အစုပိုင်းအတွင်းရှိ အစုဝင်တစ်ခုချင်းစီ၏ အစီအစဉ်ကို ထည့်သွင်း စဉ်းစားခြင်း မရှိပါ။
A, B, C, D နှင့် E ကျောင်းသား ၅ ယောက်ထဲမှ ကျောင်းသား ၂ ယောက်ပါသော ကိုယ်စားလှယ်အဖွဲ့ ဖွဲ့ရန်လိုအပ်သည်။
(a) ပ-ကိုယ်စားလှယ်၊ ဒု-ကိုယ်စားလှယ် ကျောင်းသား ၂ ယောက်ပါသော ကိုယ်စားလှယ် အဖွဲ့ပေါင်း မည်မျှ ဖွဲ့နိုင်သနည်း။
(b) ကျောင်းသား ၂ ယောက်ပါသော ကိုယ်စားလှယ် အဖွဲ့ပေါင်း မည်မျှ ဖွဲ့နိုင်သနည်း။
မေးခွန်း (a) တွင် ပ-ကိုယ်စားလှယ်၊ နှင့် ဒု-ကိုယ်စားလှယ် ဟူ၍ ခွဲခြားမေးထားသည်။ ထို့ကြောင့် မည်သူက ပ-ကိုယ်စားလှယ် ဖြစ်မည်၊ မည်သူက ဒု-ကိုယ်စားလှယ် ဖြစ်မည်၊ ဆိုသော အစီအစဉ်သည် အရေးပါသည်ကို တွေ့ရပါမည်။
မေးခွန်း (b) တွင် ကျောင်းသား ၂ ယောက်ပါသော ကိုယ်စားလှယ် အဖွဲ့ပေါင်းဟု မေးထားသည်။ ကိုယ်စားလှယ်အဖွဲ့၌ ကျောင်းသားနှစ်ယောက် ပါဝင်ရန်သာလိုအပ်သည်။ ပထမကျောင်းသား၊ ဒုတိယကျောင်းသား၊ မည်သူမည်ဝါ ဖြစ်ရမည်ဆိုသော သတ်မှတ်ချက်သည် အရေးမပါတော့ပါ။
ထို့ကြောင့် မေးခွန်း (a) အတွက် တွဲနိုင်သော အစီအစဉ်ပေါင်းမှာ $20$ ဖြစ်ပြီး၊ မေးခွန်း (B) အတွက် တွဲနိုင်သော အစီအစဉ်ပေါင်းမှာ $10$ ဖြစ်သည်။
အောက်ပါဇယားဖြင့် ယှဉ်တွဲလေ့လာကြည့်ပါ။
A | B | C | D | E | |
---|---|---|---|---|---|
A | AB | AC | AD | AE | |
B | BA | BC | BD | BE | |
C | CA | CB | CD | CE | |
D | DA | DB | DC | DE | |
E | EA | EB | EC | ED |
မေးခွန်း (a) သည် အစီအစဉ် အရေးပါသောကြောင့် permutation ဖြစ်ပြီး မေးခွန်း (b) တွင် ကျောင်းသားနှစ်ယောက်၏ အစီအစဉ် အရေးမပါတော့ သောကြောင့် combination ဖြစ်သည်။
COMBINATION OF $n$ OBJECTS TAKEN $r$ AT A TIME
The number of combinations of $n$ different things taken $r$ at a time
is denoted by ${}^nC_r$ and is defined as
|
---|
DIFFERENCE BETWEEN PERMUTATION AND COMBINATION
Permutation | Combination |
---|---|
Permutation is defined as arrangement of r things that can be done out of total n things. | Combination is defined as selection of r things that can be done out of total n things. |
Represents arrangement. | Represents grouping or selection |
Order of objects or arrangement matter | Order of grouping/selection does not matter |
Denoted by $^{n}{{P}_{r}}=\displaystyle\frac{{n!}}{{(n-r)!}}$ | Denoted by $^{n}{{C}_{r}}=\displaystyle\frac{{n!}}{{r!}{(n-r)!}}$ |
Many permutations can be derived from a single combination. | Only one combination can be derived with one permutation. |
အောက်ပါ video ဖြင့် ယှဉ်တွဲလေ့လာကြည့်ပါ။
Video Credit : Steve Stein
Example (1)
(a).
A local school board with 8 people needs to form a committee with three people.
How many ways can this committee be formed? Order of 3 people doesn't matter. Thus, it is combination. Number of ways to constitute a committee $\begin{array}{l} ={\ }^{8}{{C}_{3}}\\\\ =\displaystyle\frac{{8!}}{{3!}{(8-3)!}}\\\\ =\displaystyle\frac{{8!}}{{3!}{5!}}\\\\ = \displaystyle\frac{{8\times7\times6\times5\times4\times3\times2\times1}}{{(3\times2\times1)}\cdot{(5\times4\times3\times2\times1)}}\\\\ =56 \end{array}$
(b).
A local school board with 8 people needs to form a committee with three different
responsibilities. How many ways can this committee be formed? Order of 3 people matter for their responsibilities. Thus, it is permutation. Number of ways to constitute a committee. $\begin{array}{l} ={\ }^{8}{{P}_{3}}\\\\ =\displaystyle\frac{{8!}}{{(8-3)!}}\\\\ =\displaystyle\frac{{8!}}{{5!}}\\\\ = \displaystyle\frac{{8\times7\times6\times5\times4\times3\times2\times1}}{{5\times4\times3\times2\times1}}\\\\ =336 \end{array}$ |
---|
PROPERTIES OF COMBINATIONS$\begin{array}{|c|}\hline\color{red}{ 1. {\ }^{n}{C}_{r}={\ }^{n}{C}_{n-r}}\\\hline\end{array}$Proof: $\begin{aligned} \mathrm{LHS}&={ }^{n} C_{r}=\frac{n !}{r !(n-r) !} \\\\ \mathrm{RHS} &={ }^{n} C_{n-r}=\frac{n !}{(n-r) !(n-(n-r)) !} \\\\ &=\frac{n !}{(n-r) ! r !} \\\\ \therefore \mathrm{LHS} &=\mathrm{RHS} \\\\ \text { Note: }& 1. {\ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow x= y \text { or } x+y=n\\\\ & 2. {\ }^{n} C_{0}={ }^{n} C_{n}=1\\\\ & 3. {\ }^{n} C_{1}={ }^{n} C_{n-1}=n\\\\ \end{aligned}$ $\begin{array}{|c|}\hline \color{red}{2. {\ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}}\\\hline\end{array}$ Proof: $\begin{aligned} \mathrm{LHS} &={ }^{n} C_{r}+{ }^{n} C_{r-1} \\\\ &=\frac{n !}{r !(n-r) !}+\frac{n !}{(r-1) !(n-r+1) !} \\\\ &=\frac{n !}{r !(n-r) !} \times \frac{(n-r+1)}{(n-r+1)}+\frac{n !}{(r-1) !(n-r+1) !} \times \frac{r}{r} \\\\ &=\frac{n !(n-r+1)}{r !(n-r+1) !}+\frac{r \times n !}{r !(n-r+1) !}[n !=n(n-1) !] \\\\ &=\frac{n !(n+1)-r \times n !+r \times n !}{r !(n-r+1) !} \\\\ &=\frac{(n+1) !}{r !(n-r+1) !} \\\\ \operatorname{RHS} &={ }^{n+1} C_{r}\\\\ &=\frac{(n+1) !}{r !(n+1-r) !} \\\\ &=\frac{(n+1) !}{r !(n-r+1) !} \\\\ \therefore\ \mathrm{LHS} &=\mathrm{RHS} \end{aligned}$ $\begin{array}{|c|}\hline \color{red}{3. {\ }^{n} C_{r}=\displaystyle\frac{n_{n-1}}{r} C_{r-1}=\frac{n(n-1)_{n-2}}{r(r-1)} C_{r-2}=\ldots}\\\hline\end{array}$ Proof: $\begin{aligned} { }^{n} C_{r}&=\frac{n(n-1)(n-2) \ldots(n-r+1)}{1 \times 2 \times 3 \times \ldots(r-2)(r-1) r}\\\\ &=\frac{n}{r} \times \frac{(n-1)(n-2) \ldots(n-r+1)}{1 \times 2 \times 3 \times \ldots(r-2)(r-1)}\\\\ &=\frac{n}{r}\cdot{ }^{n-1} C_{r-1}\\\\ { }^{n} C_{r}&=\frac{n(n-1)(n-2) \ldots(n-r+1)}{1 \times 2 \times 3 \times \ldots(r-2)(r-1) r}\\\\ &=\frac{n(n-1)}{r(r-1)} \times \frac{(n-2) \ldots(n-r+1)}{1 \times 2 \times 3 \times \ldots(r-2)}\\\\ &=\frac{n(n-1)}{r(r-1)}\cdot{ }^{n-2} C_{r-2}\\\\ &\text{and so on.} \end{aligned}$ |
---|
$A, B$ နှင့် $C$ လူသုံးယောက်ရှိသည် ဆိုပါစို့။ $A, B$ နှင့် $C$ ကို မျဉ်းဖြောင့် နေရာချထားနိုင်သည့် အစီအစဉ်မှာ $3! = 6$ ways ဖြစ်ကြောင်း
ယခင် post (part 1, part 2, part 3) တို့တွင် တင်ပြခဲ့ပြီးဖြစ်သည်။
$A, B$ နှင့် $C$ ကို မျဉ်းဖြောင့် နေရာချထားနိုင်သည့် အစီအစဉ် (၆) ခုမှာ ABC, BCA, CAB, ACB, BAC, CBA တို့ ဖြစ်သည်။
သို့ရာတွင် အဆိုပါလူသုံးဦးကို စားပွဲဝိုင်းတွင် နေရာချထားသည့်အခါ ABC, BCA, CAB အစီအစဉ်သုံးခုမှာ အတူတူပင်ဖြစ်ကြောင်း တွေ့ရမည်။
မျဉ်းဖြောင့်နေရာချထားမှုတွင် A သည် မည့်သည့်နေရာတွင် ရှိသည့်ဆိုသည့် အခြေအနေက နေရာချထားမှု အစီအစဉ်တွင် ထည့်သွင်းစဉ်းစားရပြီး စက်ဝိုင်းပုံနေရာချထားမှုတွင် ပထမဦးဆုံးနေရာသည် မည်သည့်နေရာတွင်ဖြစ်စေ အရေးပါမှုမရှိတော့ပဲ ၎င်းနောက်မှ အဖွဲ့ဝင်များ၏ အစီအစဉ် အရေအတွက်ကိုသာ ထည့်သွင်း စဉ်းစားရမည် ဖြစ်သည်။ ထို့ကြောင့် လူသုံးဦး၏ စက်ဝိုင်းပုံ နေရာချထားမှု (circular permutation) တွင် ...
ထို့ကြောင့် သုံးယောက်တွင် ပထမဦးဆုံးလူ၏ နေရာချထားမှုအစီအစဉ်ကို ထည့်သွင်းတွက်ချက်ရန် မလိုသောကြောင့် $(3 - 1)! = 2! = 2$ ways သာ ဖြစ်မည်။
ထို့ကြောင့် စက်ဝိုင်းပုံ လမ်းကြောင်းပေါ်တွင် မတူညီသော အရာဝတ္ထု $n$ ကို စီစဉ်နိုင်သော နည်းလမ်းအရေအတွက်မှာ $(n - 1)!$ ဖြစ်သည်။
ဤတွင် လက်ယာရစ် (anticlockwise direction) နှင့် လက်ဝဲရစ် (anticlockwise direction) တို့ကို မတူညီသော
အစီအစဉ်များ အဖြစ်သတ်မှတ်ပါသည်။ အကယ်၍ လက်ယာရစ် နှင့် လက်ဝဲရစ် တို့သည် တူညီသော အခြေအနေ (ဥပမာ - ပုတီး) တွင် အရာဝတ္ထု $n$ ကို စီစဉ်နိုင်သော
နည်းလမ်း အရေအတွက်မှာ $\displaystyle\frac{(n - 1)!}{2}$ ဖြစ်သည်။
CIRCULAR PERMUTATION
If $n$ different things can be arranged in a row, the linear arrangements is
$n!$, whereas every linear arrangements have a beginning and
end but in circular permutations, there is neither beginning
nor end.
When clockwise and anti-clockwise orders are taken as
different, the number of circular permutations of $n$ different
things taken all at a time is
$\begin{array}{|c|}\hline(n – 1)!\\ \hline\end{array}$
But, when the clockwise and anti-clockwise orders are not different, i.e. the arrangements of beads in a necklace, arrangements of flowers in a garland, etc.
The number of circular permutations of $n$ different things is
RESTRICTED CIRCULAR PERMUTATIONS
If clockwise and anti-clockwise arrangements are taken as different,
the number of circular permutations of $n$ different things,
taken $r$ at a time is given by
$\begin{array}{|c|}\hline\displaystyle\frac{{}^nP_{r}}{r}\\ \hline\end{array}$
If clockwise and anti-clockwise arrangements are taken as different,
the number of circular permutations of $n$ different things,
taken $r$ at a time is given by
$\begin{array}{|c|}\hline\displaystyle\frac{{}^nP_{r}}{2r}\\ \hline\end{array}$
အောက်ပါ video နှင့် ယှဉ်တွဲလေ့လာကြည့်ပါ။
Video Credit : Don't Memorise YouTube Channel
Example (1) At a dinner party 3 men and 3 women sit at a round table. In how many ways can they sit if: (a) there are no restrictions? (b) men and women in alternate arrangement? (c) U Kyaw and U Myo must sit together? (a) Number of ways = (6 – 1)! = 5! (b) Number of ways = (3 – 1)! 3!= 2! 3! (c) Arrangement : (U Kyaw and U Myo) and other 4 members Number of ways = 2! 4! |
---|
EXERCISES
1.
In how many ways, can we arrange 6 different flowers in a circle?
2.
It is decided to label the vertices of a rectangle with the letters A, B, C and D. In how many ways is this possible if:
(a) they are to be in clockwise alphabetical order? (b) they are to be in alphabetical order? (c) they are to be in random order?
3.
In how many ways, 6 Myanmars and 5 Koreans can be seated in a round table if (i) there is no restriction? (ii) all the 5 Koreans sit together? (iii) all the 5 Koreans do not sit together? (iv) no two Koreans sit together?
4.
In how many ways, 20 persons be seated around a round table
if there are 10 seats available there?
|
---|