Conic Sectons (Circle) - Part (5)

Circle

Definition
A circle is the set of all points in a plane that are a fixed distance from a given point in the plane. The given point is called the center of the circle which is denoted by $(h, k)$. The fixed distance is called the radius of the circle and is denoted by $r$.
  • ပြင်ညီ တစ်ခုပေါ်ရှိ ပေးထားသောအမှတ်သေတစ်ခု $(h, k)$ မှ အကွာအဝေး $(r)$ တူသော အမှတ်များအားလုံးပါဝင်သော အစုကို စက်ဝိုင်း ဟုခေါ်သည်။

  • ပေးထားသော အမှတ်သေ $(h, k)$ ကို စက်ဝိုင်း၏ဗဟို ဟုခေါ်သည်။

  • ဗဟိုမှ အမှတ်အစုဝေးများ၏ အကွာအဝေးကို အချင်းဝက်ဟုခေါ်သည်။


အောက်ပါ applet မှ အမှတ် $P(x, y)$ ကို ပွတ်ဆွဲကြည့်ပါ။

Standard Equation of a Circle

ပေးထာသော စက်ဝိုင်း၏ ဗဟိုသည် $O(h, k)$၊ အချင်းဝက်သည် $r$၊ အဝန်းပေါ်ရှိ အမှတ်တစ်ခုသည် $P(x, y)$ ဖြစ်သည် ဆိုပါစို့။

ထို့ကြောင့် $O(h, k)$ နှင့် $P(x, y)$ တို့သည် အလျား $r$ unit ရှိသော မျဉ်းတစ်ခု၏ အစွန်းမှတ်များ ဖြစ်သည်။

ထို့ကြောင့် distance formula အရ...

$\begin{array}{l} \sqrt{(x-h)^{2}+(y-k)^{2}}=r\\\\ \text { Squaring both sides, }\\\\ (x-h)^{2}+(y-k)^{2}=r^{2} \end{array}$

ထို့ကြောင့် အချင်းဝက် $r$ unit ရှိပြီး ဗဟို $(h, k)$ ရှိသော စက်ဝိုင်းတစ်ခု၏ standard equation ကို

$\begin{array}{|l|} \hline (x-h)^{2}+(y-k)^{2}=r^{2}\\ \hline \end{array}$


ဟုပြောနိုင်သည်။

General Equation of a Circle

G အချင်းဝက် $r$ unit ရှိပြီး ဗဟို $(h, k)$ ရှိသော စက်ဝိုင်းတစ်ခု၏ standard equation ကို အကျယ်ဖြန့်ပါက စက်ဝိုင်းတစ်ခု၏ general equation ကို အောက်ပါအတိုင်း ရရှိပါမည်။

$(x-h)^{2}+(y-k)^{2}=r^{2}$

$x^{2}-2 h x+h^{2}+y^{2}-2 k y+k^{2}=r^{2}$

$x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}-r^{2}=0$

Let $h^{2}+k^{2}-r^{2}=e$,

then the equation becomes

$x^{2}+y^{2}-2 h x-2 k y+e=0$

where centre $=(h, k)$.

Since $h^{2}+k^{2}-r^{2}=e$

$r^{2}=h^{2}+k^{2}-e$

$\therefore$ radius $=\sqrt{h^{2}+k^{2}-e}$

ထို့ကြောင့် စက်ဝိုင်းတစ်ခု၏ standard form equation နှင့် general form equation တို့ကို အောက်ပါဇယားဖြင့် အနှစ်ချုပ် မှတ်သားနိုင်ပါသည်။

Equation of a Circle
Standard Form General Form
Equation $(x-h)^{2}+(y-k)^{2}=r^{2}$ $x^{2}+y^{2}-2 h x-2 k y+e=0$
Centre $(h, k)$ $(h, k)$
Radius $r$ $r=\sqrt{h^{2}+k^{2}-e}$


ကတော့ချွန် (Cone) တစ်ခုကို ဖြတ်လိုက်ခြင်းကြောင့် ဖြစ်လာသော မည်သည့် အနားစောင်းပုံစံ (Conic Section) တစ်ခုကို မဆို

$Ax^2+Bxy+Cy^2+Dx+Ey+F = 0$


ဆိုသော ယျေဘုယျ ပုံစံဖြင့် ဖော်ပြနိုင် ကြောင်း Part (4) တွင် တင်ပြခဲ့ပြီး ဖြစ်သည်။

စက်ဝိုင်းတစ်ခု၏ ညီမျှခြင်းတွင် အထက်တွင်ဖော်ပြခဲ့သော ဇယားအရ $A=C$, $B=0$, $D=-2h$, $E=-2k$ နှင့် $F=e$ ဖြစ်သည်ဟု မှတ်ယူနိုင်ပါသည်။

Worked Examples

Example (1)

Write down the coordinates of the centre and the radius of each of thefollowing circles.

(a) $x^{2}+y^{2}=81$

(b) $(x+4)^{2}+(y-6)^{2}=100$

(c) $x^{2}+\left(y+\displaystyle\frac{1}{3}\right)^{2}-16=0$

Solution

$\begin{array}{ll} \textbf{(a)} & x^{2}+y^{2}=81 \\\\ &\text { Comparing with }(x-h)^{2}+(y-k)^{2}=r^{2}, \\\\ & h=k=0 \\\\ & r^{2}=81 \\\\ & r=9 \\\\ & \therefore \text { centre }=(0,0), \text { radius }=9\\\\ \textbf{(b)} & (x+4)^{2}+(y-6)^{2}=100\\\\ &\text { Comparing with }(x-h)^{2}+(y-k)^{2}=r^{2}, \\\\ & h=-4,\ k=6 \\\\ & r^{2}=100 \\\\ & r=10 \\\\ & \therefore \text { centre }=(-4,6), \text { radius }=10\\\\ \textbf{(c)} & x^{2}+\left(y+\displaystyle\frac{1}{3}\right)^{2}-16=0 \\\\ &\therefore\ x^{2}+\left(y+\displaystyle\frac{1}{3}\right)^{2}=16 \\\\ &\text { Comparing with }(x-h)^{2}+(y-k)^{2}=r^{2}, \\\\ & h=0, \ k=-\displaystyle\frac{1}{3} \\\\ & r^{2}=16 \\\\ & r=4 \\\\ & \therefore \text { centre }=\left(0,\ -\displaystyle\frac{1}{3}\right), \text { radius }=4 \end{array}$

Example (2)

Find the equation of a circle with diameter PQ, where the coordinates of $P$ and $Q$ are $(−2, 1)$ and $(4, 3)$ respectively. Hence graph the circle.

Solution

Let the centre of the circle br $O$.

Therefore, $O$ is the midpoint of circle.

$\begin{aligned} \therefore \text { center } &=\left(\displaystyle\frac{-2+4}{2}, \displaystyle\frac{1+3}{2}\right) \\\\ &=\left(\displaystyle\frac{2}{2}, \displaystyle\frac{4}{2}\right) \\\\ &=(1,2) \\\\ \text { radius } &=O Q \\\\ &=\sqrt{(4-1)^{2}+(3-2)^{2}} \\\\ &=\sqrt{10} \end{aligned}$

$\therefore$ The equation of circle is $(x-1)^{2}+(y-2)^{2}=10$.


Example (3)

Find the equation of a circle which touches the $x$-axis and whose centre is $O(−3, 5)$.

Solution

$\text{center} = (−3, 5)$

Since the circle touches $x$-axis, the point $(−3, 0)$ lies on the circumference of the circle.

$\text{radius} = |5-0| = 5$.

$\therefore$ The equation of circle is

$(x+3)^{2}+(y-5)^{2}=5^2$.

$(x+3)^{2}+(y-5)^{2}=25$.


Example (4)

Find the centre and the radius of the circle $x^2 + y^2 - 6x + 8y + 9 = 0$

Solution

Method (1)

Circle equation : $x^2 + y^2 - 6x + 8y + 9 = 0$

Comparing with $x^2 + y^2 - 2hx -2k y + e = 0$,

$2h = 6,\ 2k = -8$ and $e=9$.

$\therefore\ \ h=3, \ k=-4,\ e=9$.

$\text{center} = (h,\ k) = (3,\ -4)$

$\begin{array}{l}\ \ \ \ \text{radius}=\sqrt{{{{h}^{2}}+{{k}^{2}}-e}}\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sqrt{{{{3}^{2}}+{{{(-4)}}^{2}}-9}}\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sqrt{{9+16-9}}\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =4\end{array}$

Method (2)

Circle equation : $x^2 + y^2 - 6x + 8y + 9 = 0$

Rearranging, we have

$x^2 - 6x + y^2 + 8y = -9$

$x^2 - 2(3)x + 3^2 + y^2 + 2(4)y + 4^2 = -9+ 3^2 + 4^2$

$\therefore\ \ (x-3)^2 + (y + 4)^2 = 4^2$

Comparing with $(x-h)^2 + (y -k)^2 = r^2$,

$\therefore\ \ h=3, \ k=-4,\ r=4$.

$\text{center} = (h,\ k) = (3,\ -4)$

$\text{radius} = r = 4$


Exercises

  1. Find the centre and the radius of each of the following circles.

    $\begin{array}{ll} \text{(a)} & x^{2}+y^{2}=49\\\\ \text{(b)} & 2 x^{2}+2 y^{2}=5\\\\ \text{(c)} & (x+2)^{2}+(y-3)^{2}=16\\\\ \text{(d)} & x^{2}+y^{2}=2 x+8\\\\ \text{(e)} & x^{2}+y^{2}-x-5 y+4=0\\\\ \text{(f)} & 4 x^{2}+4 y^{2}-6 x+10 y=\frac{1}{2} \end{array}$

  2. Determine equations for the circles having the following properties:

    $\text{(a)}$    center at $(2,-5)$, radius 7

    $\text{(b)}$    center at $(-3,-1)$, radius 5

    $\text{(c)}$    a diameter with the end points $(5,-4)$ and $(-3,2)$

    $\text{(d)}$    center at $(4,-2)$, tangent to $x=5$

    $\text{(e)}$    center at $(-7,2)$, tangent to the $x$ axis

    $\text{(f)}$    radius 5, tangent to the $y$ axis at $(0,-1)$

    $\text{(g)}$    center at $(1,3)$, passing through the origin

    $\text{(h)}$    center at $(0,3)$, tangent to $2 x+y-13=0$

    $\text{(i)}$    center at $(4,0)$, tangent to $2 x-3 y+5=0$